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ABSTRACT

SIMPLIFIED METHODS TO SOLVE THE CONJUGATED HEAT TRANSFER
PROBLEMS UNDER THE EFFECT OF PARABOLIC AND HYPERBOLIC
HEAT CONDUCTION MODELS

By
Abdel-Muttaleb Khadrawi

Supervisor
Professor Mahmoud Hammad
University of Jordan
Co-Supervisor

Professor Mohammad Al-Nimr
Jordan University of Science and Technology

A generalized thermal boundary condition is derived for the parabolic and the
hyperbolic models to include all thermal effects of a thin layer, whether solid-skin or
fluid film, moving or stationary, in perfect or imperfect thermal contact with an adjacent
domain.  The thin layers thermal effects include, among others, thermal capacity of the
Jayer, thermal diffusion, enthalpy flow, viscous dissipation within the layer and
convective losses from the layer. Six different kinds of thermal boundary conditions can
be obtained as special cases of the generalized boundary condition. The importance of
the generalized boundary condition is demonstrated comprehensively in an example.
The effects of different geometrical and thermophysical properties on the validity of the
generalized thermal boundary condition are investigated. Also, the heat transfer
mechanisms during rapid heating of two-layer composite thin slabs from a macroscopic
point of view using the hyperbolic heat conduction model is studied. The composite
slabs consist of two thin metal layers, which may be in perfect or imperfect thermal
contact. The effects of different parameters, such as the two film thickness ratios,

thermal conductivity ratio, heat capacity ratio, thermal relaxation time and interfacial

heat transfer coefficient on the thermal behavior of the composite slabs are investigated.

xvi
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It was found that the hyperbolic and the parabolic models give almost the same

~ predictions as long as the values of 7, and 7, are relatively small. This implies that

the hyperbolic concept has insignificant effect on the predictions of the parabolic heat

conduction models when 7,, and 7, are lessthan 0.01. The dual-phase-lag model

aims to remove the precedence assumption made in the thermal wave model. It allows
either the temperature gradient (cause) to precede the heat flux vector (effect) or the
heat flux vector {cause) to precede the temperature gradient (effect). Also, It was found
that the hyperbolic and the dual phase models give almost the same predictions as long

as the values of r,, and 7, are relatively small. This implies that the phase-lag

concept has insignificant effect on the predictions of the hyperbolic heat conduction
models when 7, and 7, , are less than 0.001.

A simple peﬁurbation technique is used to reformulate the energy equations, which
describe the transient thermal behavior of a radially lumped conjugated heat transfer
- problem in circular ducts of finite wall thickness. The simple perturbation technique
used to eliminate the coupling between the fluid and solid-wall energy equations when
the normalized temperature difference between the fluid and the solid wall is a small-
perturbed quantity. The importance of this technique is demonstrated comprehensively

in an example. Itis found that there are three parameters [,, H, and H, that control

this technique.

xvii
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1-INTRODUCTION

Energy transport during fast laser heating of solids has become a very active
research area due to the tremendous applications of short-pulse lasers in the fabrication
of microstructures, synthesis of advanced materials, measurement of thin-film
properties, diagnostics of material’s structure transformation, micromachining, laser
patterning, laser processing of diamond films from carbon ion-implanted copper
substrates, and laser surface hardening (Oui, 1992).

In the literature, there are basically four models that describe the mechanism of
energy transport in very thin films or during short-pulse laser heating. The first model is
the parabolic one-step model, which is based on the classical Fourier Conduction law.
This model assumes that the solid lattice and electron gas is in local thermal equilibrium
and the heat flux merges instantaneously when the temperature gradient exists. The
expression electron gas is a terminology to describe the thermal behavior of the
electrons. The second model used is the hyperbolic one-step model, Kim et al. (1990),
Chen et al. (1994), Al-Nimr and Naji (1999) and Al-Nimr and Al-Huniti (2000), which
was first postulated by (Maxwall, 1867). fn this model, it is assumed that both lattice
and electron gas are in local thermal equilibrium but the heat flux and the temperature
gradient are non-local in time. This implies that the heat flux lags the temperature
gradient by the relaxation time. The third and the fourth models are the parabolic and
the hyperbolic two-step models, (Qui and Tien, 1992), (Tzuo, et al., 1994), (Al-Nimr ef
al., 1999) and (Al-Nimr and Kiwan, 2000). In these models it is assumed that solid
lattice has different temperature than electron gas and the difference between these two

temperatures depends on the coupling factor between both domains.
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Conjugate heat transfer of laminar flow in duct has been widely analyzed in the
past. Shah and London (1978) and Barozzi and Pagliarini (1985) presented an extensive
review on this subject. Early attempts, Siegel (1959); Pelimutter and Siegel (1961),
Chen et al. (1983) and Cotta et al. (1986) to solve unsteady conjugated heat transfer
problems neglect the heat conduction in the solid wall and its heat capacity. The results
of such investigations are valid for flows in the thin-walled ducts, but not for thick
walled once. Sucec and Sawant (1984), and Cotta ef al. (1987) analyzed the effect of
wall heat capacity on unsteady heat transfer in laminar channel flows. Chung and
Kassemi (1980), Krishan (1982), Lin and Kuo {1988), Yan et al. (1989), Al-Nimr and
Hader {1994) and El-Shaarawi et al. (1995) examined the heat conduction in the solid.
In the preceding works, the methods of solution where either approximate, Chung and
(Kassemi, 1980); (Krishan, 1982) or numerical, (Lin and Kuo, 1988) and (Yan ez al.
1989). Sparrow and Farias (1986) seem to make the first attempt to evaluate the
eigenvalues of equation associated with conjugated transient forced convection of slug
flow in parallel plate channels. Using quasi-steady approach, Sucec (1981), treated the
conjugated forced convection slug flow problem in a parailel plate duct with transient
initiated by step change in the inlet fluid temperature. Neglected the axial variation of
temperature and using Laplace transformation, Krishan (1982), obtained series solution
which are valid for small time period afier the occurrence of a step change in wall heat
flux temperature. Sucec and Sawant (1984) used quasi-steady approach with the actual
parabolic fully developed velocity profile to study the unsteady conjugated heat transfer
problems in a parallel plate channel with periodic variations in inlet fluid temperature
with time. Travelho and santos (1991) presented analytical solution for transient
conjugated forced convection in the entrance region of a duct with periodically varying

inlet temperature. Olek et. al. (1991) presented analytical solution for a similar problem
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in laminar pipe flow, where the flow is both hydrodynamically and thermally fully
developed. Issa and Al-Nimr (1989) analyzed the transient behavior of hot water storage
‘3 tanks where the wall effects are not taken into account. Sucec (1984) and Kakac ef al.
(1990) proposed a model, which solves the energy equation within the fluid domain
only using a general so-called fifth kind boundary condition. This kind of boundary
conditions, which assumes that the wall is lumped radially, takes the effects of the wall
into account by combining the external convection losses from' the wall, the radial
conducted heat into the wall and the thermal capacity of the wall. Sakakibara ef al.
(1987) analytically investigated the steady conjugate heat transfer problem in an annular
with a heated core and an insolated outside tube when the laminar flow is
hydrodynamically fully developed. Al-Nimr and El-Shaarawi (1992) present analytical
exact solutions for the problem of conjugated heat transfer in parallel plate and circular
ducts. Al-Nimr (1993) modified the fifth kind boundary condition to include axial
conduction in the wall and imposed heat flux on the outer surface of the wall. El-
Shaarawi and Al-Nimr (1995) presented a finite-difference scheme to solve the transient
conjugated heat transfer problem in a concentric annulus with simultaneously
~ developing hydrodynamic and thermal boundary layers. Also, Al-Nimr (1998) used a
simple perturbation technique to reformulate the energy equations which describe the
transient thermal behavior of radially lumped conjugated heat transfer problem in
circular and parallel plate ducts of finite wall thickness.

Cattaneo (1958) and Vernotte (1961) were the earliest investigators to formulate,
independently, the hyperbolic wave energy eciuation. Peshkov (1944) was the earliest
investigator to detect experimentally the existence of thermal waves using super fluid
liquid helium near absolute zero. Since then, various analytical and numerical methods

have been proposed to solve the hyperbolic heat conduction problems under different
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applications and in different conﬁgﬁfatibﬂs. Vick and Ozisik (1983) investigated the
'wave nature of heat propagation in a semi-infinite medium containing volumetric
energy sources by solving analytically the hyperbolic heat conduction equation.
Gembarovic and Majernik (1988) investigated analytically non-Fourier effects ina
finite slab using the hyperbolic heat conduction model. Ozisik and Tzou {1994) studied
the engineering applications of the thermal wave theory, special features in thermal
wave propagation, and the thermal wave model in relation to the microscopic two-step
model. Kumar and Raju (1991) described numerical simulations for hyperbolic heat
conduction problems involving non-Fourier effects via explicit self-starting Lax-
Wendorff-based finite element formulations. Chen and Lin (1994) developed various
analytical and numerical schemes for hyperbolic heat conduction problems with
constant thermal properties.
This work will concentrate on finding simplified methods to solve the conjugated
heat transfer problems under the effect of parabolic and hyperbolic one-step heat

conduction models.

1.1 Lagging behavior

The lagging response, in general, describes the heat flux vector and the
temperature gradient occurring at different instants of time in the heat transfer process.
If the heat flux precedes the temperature gradient in the time history, the heat flux is the
cause and the temperature gradient is the effect of heat flow. If the temperature gradient
precedes the heat flux, on the other hand, the temperature gradient becomes the cause
and the heat flux becomes the effect. This concept of precedence does not exist in the

classical theory of diffusion because the heat flux vector and the temperature gradient

are assumed to occur simultaneously.
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This part establishes the theoretical foundation for the lagging response in

: conductive heat transfer. It results in a new type of energy equation, capturing the

classical theories of diffusion (macroscopic in both space and time) and thermal waves
(macroscopic in space but microscopic in time). The resulting model employing the two
phase lags in describing the transient process is called the dual-phase-lag model.

In the classical theory of diffusion, the heat flux vector (g) and the temperature gradient
(VT) across a material volume are assumed | to occur at the sarﬁe instant of time.
Mathematically this is represented by Fourier’s law:

lx,1) = —kVT(x,1), (1.1)
where x denoting the position vector of the material volume 7 is the physical time. It
results in an infinite speed of heat propagation, implying that the thermal distribution
applied at a certain location in a solid medium can be sensed immediately anywhere
else in the medium. Because the heat flux vector and the temperature gradient are
simultaneous, there is no difference between the cause and the effect of heat flow. In the
wave theory of t;eat conduction, on the other hand, the heat flux vector and the
temperature gradient acrossa material volume are assumed to occur at different instant
of time. To account for the phenomena involving the finite propagation velocity of the
thermal wave, the classical Fourier heat flux should be modified. Cattaneo (1958) and

Vernotte (1961) suggested independently a modified heat flux model in the form

)=k ZED 5E0400 a
X

where T is the time delay, called the “relaxation time”. The constitution law of Eq. (1.2)
assumes that the heat flux vector (the effect) and the temperature gradient (the cause)
across a material volume occur at different instant of time and the time delay between

the heat flux and the temperature gradient is the relaxation time 7 . The first order
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expansion of g in Eaq. (1.2) with respect to f bridges all the physical quantities at the

. same time. It results in the expansion:

?a—qgﬁw(x,m?):—km (1.3)

ox
In Eq.(1.3) it is assumed that 7’is small enough so that the first-order Taylor expansion

of g(x,z+7) is an accurate representation for the convection heat flux. The equation of
energy conservation for such problems is given as:

a__a (1.4)

pe ot ox

where p is the density and c is the specific heat. Elimination of g between Eqgs. (1.3)
and (1.4) leads to the hyperbolic heat conduction equation:

2 2
pc%‘g-£+,oc§£=ka T (1.5}

or? ot ox?

1

The wave model represented in Eq. (1.5) removes the paradox of infinite speed of heat

propagation assumed in Fourier’s law. Tzou (1997), relates the relaxation time to the

thermal wave speed as:
~ a
F=Z (1.6)

where « is the thermal diffusivity and C denotes the thermal wave speed. In the case of
C approaching infinity, the relaxation time decreases to zero (7= 0) and the wave
model reduces to Fourier law.

The Cattaneo and Vernotte (CV) wave model assumes an instantaneous heat flow.
The temperature gradient is always the cause for the heat transfer, while the heat flux
vector is always the effect. The dual-phase-lag model aims to remove the precedence

assumption made in the thermal wave model. It allows either the temperature gradient
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(cause) to precede the heat flux vector (effect) or the heat flux vector (cause) to precede

the temperature gradient (effect). Mathematically this is represented by (Tzou, 1995a-c).

q(x,t+?q)=-kVT(x,t+ i'}) | : (1.7)
where 7, is the phase lag of the temperature gradient and 7_is the phase lag of the heat
flux vector. For the case 7; > 7, the temperature gradient established across a material

volume is a result of the heat flow, implying that the heat flux vector is the cause and

the temperature gradient is the effect. For T, <T,, on the other hand, heat flow 15

induced by the temperature gradient established at an earlier time, implying that the

temperature gradient is the cause, while the heat flux vector is the effect.
1.2 Method of Laplace transform

The method of Laplace transform has been widely used in the solution of time-
dependent heat conduction problems. The Laplace transform technique is convenient for
the solution of domposite medium problems involving regions of semi-infinite or
infinite in extent. In this approach, the partial derivatives with respect to time is
removed by the application of the Laplace transform, the resulting system of ordinary
differential equations is solved and the transforms of temperatures are inverted; but the
principal difficulty lies in the inversion of the resulting transform. The Laplace

transform and the inversion formula of a function F(2) are defined by:

Laplace transform L{F y=F (s)= I:e's ’a (t)dt (1.8)
Inversion formula:  F(f)= -—1- ¢S F(S)dS (1.9)
2 Sy

where S is the Laplace transform variable, i = J-1, yis a positive number, and the bar

denotes the transform. Thus, the Laplace transform of a function F(?) consists of
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multiplying the function F(z) by e *'and integrating it over { from O to o. The
‘i‘inversion formula consists of the complex integration as defined by Eq. (1.9).
Some remarks on the existence of the Laplace transform of a function F(1) as
defined by Eq. (1.8) might bein orderto illustrate the significance of this matter. For
| example, the integral (1.8) may not exist because, (1) F(#) may have infinite
discontinuities for some values of't, or (2) F(¢) may have singularity as t — 0, or (3)
F(t) may diverge exponentially for Iargia { The conditions for the existence of the
Laplace transform defined by Eq. (1.8) may be summarized as follows:

1. Function F(#) is continuous or continuous in any interval 1, <t <t,, for t;, >0

2. 1"|F(¢) is bounded as £ —> 0" for some number # whenn < 1.

3. Function Fi(2) is of exponential order, namely, ¢™|F(¢) is bounded for some

positive number y as t — .

1.3 Properties of Laplace transform

Here we pregent some of the properties of Laplace transform that are useful in the
solution of heat conduction problems, used in the present work, with Laplace
transformation. |
1.3.1 Laplace transform of derivatives

The Laplace transform of the first derivative dF(1)/dt of a function F(¥) is readily

obtained by utilizing the definition of the Laplace transform and integrating it by parts:
L{F'(t)}z I:F'(t)e’s'dt = [F(t)c‘s']: + SI:F(t)e'S'dt

LiF ()= s F(s)-F(0) (1.10)
where the prime denotes differentiation with respect to ? and F(0) indicates the value of

F() at t=0", namely, as we approach zero the positive side. Thus, the Laplace
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transform of the first derivative of a function is equal to multiplying the transform of the

function by S and subtracting from it the value of this function at # =0". This result is

now utilized to determine the Laplace transform of the second derivative of a function

) as:

LiF" ()= sLiF (O)- F (0)= S[F(S) F(o )]-F'(o)

= 82 F(8)- SF(0)-F'(0)

(1.11)

1.3.2 Numerical inversion of the Laplace transform

A special technique employing the Riemann-sum approximation is developed for
the Laplace inversion, (Tzou et al., 1994) and (Chiffelle, 1994). The required Laplace

inversion is given by:

o.n)=>—

W(E,S)eds | (1.12)
21:1 7 =io

where W(£,S) is the Laplace transform solution, nis the dimensionless time and £is
the dimensionless distance. Introducing a variable transformation from S (complex) to
w (real),

S=y+io,

withy being the real constant specifying the vertical segment in the Bromwich contour,

Tzou (1997). Eq. ( 1.12) is reduced to a Fourier transform:

o(£,m) =2 e” r W(E,S =y +io)e'do (1.13)

The Fourier integral thus obtained can be approximated by its Riemann-sum. Denoting

was the wave frequency and 7" the half-period of its oscillations, i.e, @ = nr[t for the

nth wave mode and Aw, = 7/7 for all modes,

o(¢,m)= ;j ) («5,5 =r+f§;’5Je‘("ﬂ‘/") (1.14)
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Noticing further that the wave modes with positive and negative n values appear in pairs

and
(f r+ I'PHTJ ilann e )+W(§ y _ﬂ) —l'(m;xfr') - ZRC[W( R
T

Equation (1.14) can be expressed as:

Infrjei(nqrr/f.)] (1, 1 5)
T

oz, )‘T[ wie, y)+ReZW[§ J"”) -(w/f')] (116)

where Re represents the real part of the summation. Since the function ¢’ ibon/) has a

fundamental period of 27, the physical domain of 7 inEq. (1.16}is 0<#n < 27, At

n =1 ,more precisely, Eq. (1.16) yields:

0(§,n)ze—,;n—[%W(§,r)+Re§W[ “M]( 1) ] (1.17)

which is the inverse solution for W(£,S5). The Riemann-sum approximation for the
Laplace inversion, Eq. (1.17), involves a single summation for numerical process. Its
accuracy depends on the value ofy and the truncation error dictated by N. The value
ofy must be selected so that the Bromwich contour encloses all the branch points,

(Tzou, 1997). For faster convergence, however, numerous numerical experiments have
shown fhat value satisfying the relation, (Tzou et al., 1994) and (Tzou, 1995a-c).

yn =47 (1.18)
gives the most satisfactory results. The appropriate value of y for faster convergence, in
other words, depends on the instant oftime (77) at which the lagging phenomenon is
studied. The criterion shown by Eq. (1.18) is independent of the dimensionof 7.

Should the energy equation be solved with dimensions, be solved by the method of

Laplace transform, 5 inEq. (1.18) is replaced by the real time 7 while the constant 4.7

remains. The quantity y in this case, of course, has a dimension of 1/s. Selection for the

10
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number of terms used in the Riemann-sum, ¥, is straightforward. At given values of y ,
¢, and 77, the summation in Eq. (1.17) should continue until a prescribed threshold for
the accumulated partial sum is satisfied.

The Riemann-sum approximation represented by Eq. (1.17) for the Laplace
inversion has been rigorously examined, including the fundamental trigonometric,
exponential, and hyperbolic functions, Chiffelle (1994) whose Laplace inversions are
known. With Eq. (1.18), which guides the “optimal” values of y at various times 7,
satisfactory convergence is usually achieved within several tens of terms in the
Riemann-sum. The same numerical inversion technique has also been examined by the
solution of the Love’s wave equation in elasticity and some complicated solutions of

thermo-mechanical coupling in the fast-transient process.

1.4 Objectives

. Formulate the basic concepts of the two approaches for both the parabolic and
the hyperbolic heat conduction models.
. Select different case studies in conjugated heat transfer problems under the effect

of parabolic, hyperbolic and dual phase heat conduction models and solve these case

studies exactly with the proper boundary conditions.

. Resolve the parabolic and hyperbolic problems using the proposed simplified
methods.
. Investigate the validity of the proposed methods as compared to the exact

solution, which was conducted in this work.

. Resolve the case studies in conjugated heat transfer problems under the effect of
parabolic, hyperbolic and dual-phase heat conduction models for imperfect contact.

. Using a perturbation technique to simplify the conjugated heat transfer problem.

11
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1.5 Thesis layout

The thesis is divided into eight chapters, the first chapter is the introduction, it contains
introduction to literature survey, lagging behavior, Laplace transform technique, and the
objectives of the thesis. Chapters two and three present the generalized thermal
boundary condition for parabolic and hyperbolic heat conduction models, respectively.
First, mathematical formulation of the generalized boundary conditions. Second, an
illustrative example as a case study. Third, the exact and approximate solutions using
the Laplace transformation techniques are achieved. Chapter four shows the exact
solution under the case study using Laplace transformation technique for conjugated
heat conduction under the effect of dual phase model. Also, the lagging behavior is
obtained. The conjugated heat conduction problems under the pargbolic, hyperbolic and
dual phase models are resolved exactly for imperfect contact in Chapter five. Chapter
six, a perturbation technique is applied to solve the conjugated heat transfer problem
under the case study using Laplace transformation technique. Chapter seven, results and
discussions where the results of the case study models are shown graphically. Chapter
eight contains the conclusions. Then, references are shown. Finally, the appendices

present where the Laplace inverse programs that are used in the present work.

12

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



2- A GENERALIZED THERMAL BOUNDARY
CONDITION FOR THE PARABOLIC HEAT
CONDUCTION MODEL

2.1 Introduction

Situations in which a thin layer is in contact with an adjacent domain have
numerous applications in engineering. The thin layer may be a thin solid-skin or thin
fluid-film; both may be stationary or moving, The thermal behavior of such systems is
usually described by two energy equations coupled at the interface between the thin
layer and its adjacent domain. However, there are applications in which temperature
variation in the transverse direction of the thin layer may be neglected. For these
applications, a simplified thermal model can be introduced in which the boundary
conditions, which !describe the thermal interaction between the adjacent domain and its
surroundings, are modified to include different thermal effects of the thin layer.

In the literature, there are two modified thermal boundary conditions that
include the thermal effects of the thin layer and its interaction with both the adjacent
domain and the surrounding conditions. The first modified boundary condition is the
fourth kind (or Carslaw) boundary condition, (Beck ef al., 1992); (Carslaw and Jaeger,
1980). This boundary condition takes into account the thermal capacity of the thin layer
and its capability to store thermal energy. The second modified boundary condition is
of the fifth kind (or Jaeger) boundary condition, (Beck et al. 1992); (Carslaw and

Jaeger, 1980). The fifth kind boundary takes into account the thermal capacity of the

thin layer and permits heat Josses by convection from the thin layer to the ambient.

13
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It ié worth mentioning that the abové referénced hmdiﬁed boundary conditions assume
a perfect thermal contact between the thin layer and its adjacent domain.

In reality, thin layers in contact with adjacent domains may have other effects on
the thermal behavior of their adjacent domains. These effects are:
1. The enthalpy flow within the thin layer. This effect appears \.Nhen the thin layer is in
the form of a moving solid-skin or 2 moving fluid-film. |
2 Multi-dimensional thermal diffusion effects. These effects appear when the thin
layer has a very high thermal conductivity or when the temperature variation in
directions other than the transverse must be taken_into account.
3. Other thermal effects such as the viscous dissipation due to the fluid flow within the
thin film, heat' generated due to friction at the interface between the moving solid-skin
and its adjacent domain, and heat transfer due to evaporation or melting of the thin
Jayer. Viscous dissipation may be very important in applications involve thin fluid layer
fnoving at very high velocity. In these applications, high velocity gradients enhance the
generated energy by viscous dissipation.
4. Situations in which the thermal contact between the thin layer and its adjacent
domain is imperfect.

The aim of this part of the present work is to derive a generalized thermal
boundgry condition, which takes into account all thermal effects of the thin layer. These
effects are the thermal capacity, enthalpy flow, thermal diffusion, viscous dissipation
and other aspects of thermal interaction between the thin layer and both its surroundings
and adjacent domain. An example is given to demonstrate the importance of the
introduced generalized thermal boundary condition. The effects of different geometrical
and thermophysical properties on the validity of the generalized thermal boundary

condition are investigated.

14
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2.2 Analysis

Consider a thin layer that is in perfect thermal contact with an adjacent domain as
shown in Fig. 2.1. The thin layer may be a stationary or a moving solid-skin or a fluid-
film. The thin layer h'as high thermal conductivity and as a result, the temperature
distribution in the transverse direction of the layer is assumed to be lumped. Applying

the balance of thermal energy on a differential element of the thin layer yields:

dqt dg" o1
k x x c i —_
q, dx—-deAy—————dxAy—q dr+qu_pzcz—afdxm» (2.1)

where ¢*, g°and g" refer to heat transfer by conduction, convection and enthalpy flow,

respectively, and ¢' refers to different forms of heat fluxes imposed on the outer

surface of the thin layer. The enthalpy flow term accounts for the energy carried due to
the thin layer movement. Substituting for qyk AR g," and ¢°by their constitutive

laws yields:

g FBx3) 5, 0y HUXY )y 7 cx,y,)- £6)+ 4 (1,5)
oy ox
8T, (1, %, y,) T, (1, x, y,)
—p,cszu,—’-—a;——— zCsz—"z——gt—i=0 (2.2)

where subscripts 1 and 2 refer to the properties of the adjacent (thick) domain and the
thin layer, respectively, and u, refers to the velocity (in the x-direction) of the moving
solid—skin or to the average velocity (in the x-direction) of the fluid flow within the thin
film since the velocity distribution is assumed to be lumped in the transverse direction
of the film. Also, Ay = (¥, —y,) is the thickness of the thin layer, f{x,#) is a space-and
time-dependent surface temperature and A, is the heat transfer coefficient at the outer

surface of the thin layer.

15
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layer (2)
v ' u}

Fig.2.1. Schematic diagram of the thin layer and its adjacent domain
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For thin layers having high thermal conductivity and in perfect thermal contact
with their adjacent domains, the temperature of the thin layer is assumed to be lumped

transversally and equal to the boundary temperature of the adjacent domain, and as a

result, T,(t,x, y,) =T, (t,x, ;) . This reduces Eq. (2.2) to:

- lex ) | Ay—a—[kz fﬁ%ﬁ)—ha(n(r,x, Y~ £(6,2)+4' (4,)

oy Ox
aT‘l(tax:yi)_ aT‘l(tsx’yf)
X

c, A
P68 By

- pICZAyux
Equation (2.3) is generalized to three-dimensional cases as:

oz

T (tx,2) , 6I;(t,x,yf,Z)]
Ox i 0z

Ox ox

. Mwy[i(kz gf.cr_u]ﬁ_[k E%M]]__hom(f,x,y,.,z)

‘ Y

- f(t,x,2)+q" (t,x,2)+ Ayp, O - pzcsz[u,

oT (1,x,y,,2) _

—-p.c,A
P1628Y Y

The first term in Eq. (2.4) has a negative sign when the outward drawn normal to the
thin layers has the same direction as the positive y-direction, otherwise it has a positive

sign. The term @ represents the thermal energy generated within the flowing of a thin

fluid film as a result of dissipation which is given as follows:

¢=2[[au‘) +(6u,) }+(au’) +[6‘u,] +[6u‘ +au"] (2.5)

Where it is assumed that #,=0 within the thin flowing film. Terms such as 0u, Jay and
du, /0y may be given by their average values within the transverse direction of the

flowing film. When the thin layer is 2 moving solid skin, then ¢ =0, and q' will contain

a term that represents the thermal energy generated as a result of friction between the

surface of the moving solid skin and that of the adjacent domain, as follows:

17
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q' = y'P‘[\}u: + u,l] . (2.6)

where ' is the fiiction coefficient and P is the normal stress acting on the thin skin to

maintain its contact with the a.dj'acent domain. Equation (2.4) is considered as the
generalized thermal boundary condition at the interface between the thin layer and its
adjacent domain and it can be used to solve the energy equation in the adjacent (thick)
domain. The derived boundary condition takes into account all possible effects of the
thin layer and its interaction with both the ambient conditions and fhe adjacent domain.
These effects are the thermal capacity of the thin layer, thermal diffusion in different
direc.tions of the layer, enthalpy flow within the layer, friction and viscous dissipated
energy, convective losses from the skin, and other forms of incident energy fluxes.

Six boundary conditions may be considered as special cases of Eq. (2.4). To

obtain these cases, rewrite Eq. (2.4) in the following form:

3 r 5207 | gy O ARG AEIN A PRI ZLA T
ay Ox ox Oz Oz

[
F'Jha(Tl(t’x:yivz)'_f(tv x:z))+F4qi(t:xaz)+F5Ay:u2(D_F6p2c2Ay

oT (t,x,¥,,2) oT,(t,x,¥;,2) oT(t,x,y,,2)
* ! : + ! L - F Ay—1 217122 =0 2.7
l:“x o u, e 7P2C, 0¥ Py (2.7)
where F;, with 1=1,2,3,......... 7, and may have a value of Oorl depending on the

particular case. The six special cases of Eq. (2.7) are given as follows:

1. The first kind or Dirichlet boundary condition.

For this kind: F1=Fz=Fa= Fs=Fs=F7= 0, and F3=1, and as a result:
T,(t,%,7,,2) = £(t,%,2) | 28)
In this kind of boundary condition, the boundary is maintained at a prescribed

temperature f(1,x,z).

18
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2. The second kind or Neumann boundary condition

For this kind: F;=F3=Fs=Fg=F7=0, and F;=F4= 1, and as a result:

oI (t,x,y,,2)

\ % =q'(t,x,2) (2.9)

tk

This boundary condition represents a prescribed heat flux q' imposed on the boundary.

3. The third kind or Robin boundary condition:

For this kind: Fo= F4= Fs= Fs=F;=0, and F1=F3=1', and as a result:

oT, (4., ¥, 2)

Tk, =h (T,(t,x,3,,2) - F {1, %,2)) - (2.10)

This kind represents a convective heat transfer from the outer surface of the thin layer lo
a prescribed ambient temperature f(7, x, 2}
4. The fourth kind or Carslaw boundary condition:

For this kind: F;=F3= Fs=F¢=0, and F; =F4=F,=1, and as a result:

$k aﬂ(t,x,y,,z) — i(t,x,z)_ c Ayaﬂ(tsx’yhz)
1 £y q P16, ar

(2.11)
In this kind of bounidary condition, the heat capacity effect of the thin layer is taken into
consideration. * A physical example of this kind is heat transfer into a large ceramic
object with a thin metal coating on the surface. The temperature distribution in the
metal coating may be neglected across the small thickness Ay because the thermal
conductivity of the metal is far greater than that of ceramic, but storage of thermal
energy in the metal coating may not be neglected. This boundary condition can also
describe 2 suﬁ“ace film composed of a well-stirred fluid with heat capacity Ayp,c, .
5, The fifth kind or Jaeger boundary condition:

For this kind: F;=F4= Fs=F¢=0, and F;=F;=F7= 1, and as a result:

aj’i (tvxryhz)

P (2.12)

T, (1 :
Tk Q%JJ_’Q=ho(Tl(t,x,y,,z)—f(t,x,z))+p2c1£\}’
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This kind of boundary condition takes into consideration heat losses from the film and it
is physically identical to the fourth kind except that, instead of a specified heat flux on
the outer surface of the thin layer, there is a specified heat transfer coefficient ..
6. The sixth kind boundary condition:

Forthis kind: Fi=Fa=F3=Fs=Fs=Fs=F7=1.

In addition to the above mentioned six kinds of boundary conditions, there is the zeroth
kind boundary condition which can not be derived from the generalized kind given by
Eq.(2.4). The reason for this is that the zeroth kind boundary condition has no physical

content.

2.3 Case study

Consider a two-layer slab éonsists of the first layer (thick) in 0 < x <a and the
second layer (thin) in a<x <&, which are in perfect thermal contact as illustrated in
Fig. 2(a). Let k, and k,be the thermal conductivities, and @ and «a,the thermal
diffusivities for th;a first and second layers, respectively. Initially, the first and the
second region are at temperature?,. For £>0 the boundary surface at x=0 is kept at
7" and the boundary surface at x=> is kept insulated. The thickness of the two layers is

assumed to be very small relative to the height of the slab, so it is reasonable to assume

that the conducted heat is transferred in the x-direction only.

20
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Domain Domain (1)
Domain (1) (2)
T, T =00 T, G.B.C
) a > x a ¥ x
(@) (%)

Fig. 2.2: Schematic diagram of the thin layer and its adjacent domain.

2.3.1 Exact model

In this case, two energy equations coupled at the interface have to be solved.

These equations are written as:

&1, _al;

a, - o in 0<x<a (2.13)
2
a, 66;2 =% in a<x<b (2.14)

which assume the following initial and boundary conditions

T(x,0)=T,{x,0)=T,

T,0,0) =T,
T(a,0)=T,(a,) (2.15)
g hn) oL@
ox ox
aTl (b’l) - 0 0

Using the following dimensionless parameters

_T-T, af
T,-T,’ a " a

w

@
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Equations (2.13) and (2.14) and their initial and boundary conditions become:

199, 00, _ -
[t B S 0<&E<10 2.16
a8 o in 0<¢ (2.16)
2
06, 199, in 10<Z<R 2.17)
oE*  a, On
6,(£,0)=6,(£,0)=1.0 (2.18)
6,(0,7)=0.0
91 (1!7]) = 92 (I’ 7?)
(2.19)
691 (177?) =K 692(17?7)
05 Tod
agI(RJ??) - 00
o

where K, =k,/k, is the thermal conductivity ratio, @, =a,/e, is the thermal

diffusivity ratio and R=>5/a. From the definition of R, it is clear that (R-1) represents the

. . . . b-a . .
dimensionless thin layer thickness (=——). Now, with the notation that
a

L{g(, m}=W(Z,S), Laplace transformation of Eqs. (2.16) and (2.17), yields:

2
W
‘;é; —SW, = -1 (2.20)
d'l
Wy S --L 2.21)
iz a ' a

These two equations assume the following solutions:

W(&,S) = Cet’s +Ce Vs w% (2.22)
W (£,8) = Cye Vo 4 C etV +% (2.23)

Also, the Laplace transformation Eq. (2.19) yields:
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W,(0,5) = 0.0

W0,8)=#,0,9)

(2.24)
AW, (,S) _,r dW2(L.5)
o& T oL
dW,(R.S) _ o4
&

Insert Egs. (2.22) and (2.23) into (2.24) and solve for C,,C,,C;,C, to yield:

ekt
e

S

11+
), o)y
L a,. fo_’ F.
|
1
CZ == S j 9 s

+

e

_Ce +Ce icC = Cie +Ces 2R,
o= e z)) nd Cy =1 o)

Equations (2.22) and (2.23) are inverted numerically using a computer program based

on Riemann-sum approximation as:

II!

0.(&m) W[Wﬁvhmzn{é+ﬂﬂ@)] (2.25)
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where k=1 for the thick domain and k=2 for the thin domain. In Eq. (2.25), Re
i

” represents the real part of the summation, i =+/—-1and yn=4.7 gives the most

satisfactory results, (Tzou, 1997). Equation (2.25) yields the exact temperature
distribution in both domains for the perfect contact parabolic heat conduction model
case. The computer model results with changing thickness ratios, thermal diffusivity

ratios and thermal conductivity ratios were exhibited in the figures which will be

analyzed later.

2.3.2 Approximate model

In this case, we intend to solve one energy equation in the thick domain (domain 1),

jgnore the existence of the thin layer and replace its thermai effect by using the
generaiized thermal boundary condition at thé thick domain interfacial boundary with
the thin domain. It will be assumed that the two layers are in perfect thermal contact and
the thin layer is thin enough so that it has the same lumped temperature distribution in

its transverse direction. This temperature is equal to the interfacial temperature between

the thin and the thick domains. The thick domain energy equation is given as:

5’1, _ T,

N A

which assumes the following initial and boundary conditions:

T,(x,0)=T, (2.27)
7,(0,0) =T,
(2.28)
~k, A p,¢, (b — a)ﬁﬂ‘iﬁl =0.0
x ot

The second equation in (2.28) represents the generalized parabolic thermal boundary

condition, which takes into account two thermal effects of the eliminated thin layer.

24
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These two effects are the thermal storage of the thin layer and the thermal diffusion in

the thin film transverse direction.

!
'Using the following dimensionless parameter

¢

_T-T, £= _at
_T;-—Tw, '_a> 7? az

Equations (2.26), (2.27) and (2.28) become:

%6, 06,

T  in 0<£<10 (2.29)
6,(£,0)=1.0 (2.30)
8,(0,m)

2.31)

681(1:’7) +H 691(1,:77) — 0 0
0& on '

where H = K, (R-1) and R=b/a. In a manner similar to what has been done
a

previously, using Laplace transformation technique. Egs. (2.29) and (2.31) assume the
following solution in the Laplacian domain:

W,(£,8)= Aes + B +% (2.32)

(1+ e -”;(F—Hﬁ )J(e’(i(;\l?)ﬁ)} a8 :[14- e"J;(E-HJE)J
(1+HYS) (1+HYS)

where: A=

Equation (2.32) is inverted numerically using a computer program based on Riemann-

sum approximation as:

31(5,77)55;;—[]5”’](5,7)+ Re). W,(é,r+m7”](—l)"] (2.33)

Equation (3.33) represent the approximate temperature distribution in the thick domain.
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experimentally the existence of thermal waves using super fluid liquid helium near

‘absolute zero. Since then, the wave nature of heat propagation has been the subject of
numerous investigations, (Kim et al., 1990); (Vick and Ozisik, 1983); (Ozisik and Tzou,
1994).

The aim of this part of the present work is to derive a generalized thermal
boundary condition for a given domain, which is in thermal contact with an adjacent
thin layer. The thermal behavior of both domains is described by the hyperbolic energy
equation. The generalized boundary condition is applied at the boundary of the adjacent
domain and takes into account all thermal effects of the thin layer. These effects are the
thermal capacity, enthalpy flow, thermal diffusion, viscous dissipation and other aspects
of thermal interaction between the thin layer and both its surroundings and adjacent
domain. The generalized thermal boundary condition is modified to describe situations
in which the thermal contact between the thin layer and 'its adjacent domain is
imperfect. An example is given to demonstrate the importance of the introduced
generalized thermal boundary condition. The effects of different geometrical and

thermophysical properties on the validity of the generalized thermal boundary condition

are investigated.
3.2 Analysis

Consider a thin layer that is in perfect thermal contact with an adjacent domain
as shown in Fig. 2.1 and follow the same procedure shown in chapter 2. Applying the
balance of thermal energy on a differential element of the thin layer yields:

k n
qy*dx—%—dxAy—%—dxAy—q‘dv+qfdx= £.C, %Z-abcby (3.1)
where q*, g°,q"and g¢' were defined in chapter 2. The constitution law which relates
the conduction heat flux with temperature gradient is given by the classical thermal

wave model proposed by (Cattaneo, 1958) and (Vernotte, 1961) as:
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_ gt oT, ‘
g, +7 L=k —L (3.2)
or y

where T,is the thermal relaxation time, which is the effective mean free path divided by
the phonon speed. In the absence of the relaxation time, 7,= 0, Eq. (3.2) reduces to the
classical Fourier’s law.

Now substitute for qyJt from Eq. (3.1)into (3.2) and express g, and g°by their

constitutive laws after neglecting the axial diffusion within the thin layer, which is not

significant in most applications, yields:

or (1,x,y,; o7, (1,x,y,

_kl-l(—y)-zho(Tz(tax:yi)_f(tsx:yi))_qi(tax,yf)+pZCZAyux—z(-_y—)-
ay ox
oT,{t,x, ~ 0

+pzcsz2—('at'_'&l+ TlE{ho(Tz(t:x:yl)—f(rsx’yi))_qi(l:x:yi)}"'

_ 0 o, (t,x,7,) o, (1,x, ) '

7, gf[pzczAﬂlx'z—ax—_+ pzcsz_—z_a_l'—"—i_ (33)

where subscripts 1 and 2 refer to the properties of the adjacent (thick) domain and the

thin layer, respectively, and w_refers to the velocity (in the x-direction) of the moving

solid-skin or to the average velocity (in the x-direction) of the fluid flow within the thin
film since the velocity distribution is assumed to be lumped in the transverse direction

of the film. Also, Ay(=y, —y,) isthe thickness of the thin layer, f{x,?) is a space-and

time-dependent surface temperature and 4, is the heat transfer coefficient at the outer

surface of the thin layer.

For thin layers having high thermal conductivity and in perfect thermal contact
with their adjacent domains, the temperature of the thin layer is assumed to be lumped

transversally and equal to the boundary temperature of the adjacent domain, and as a

result, T,(t,x,y,) =T, (t,x,y,) . This reduces Eq. (3.3} to:
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oL (t,x, i)
— ket
oy
o1 {t,x, y,
ha(Tl(t!x!yi)_f(ttx’yj))—q'(tvxryi)+ chsz"x —l—(_—_—_}"‘_

o (tx3,)
X Ot

Pic, 0y

9
ot

7

T, (t,x,y,) N oty (1, x,¥,;)
Ox ot

{ho(Tl(t:xvyl)'_f(-ts x’yi))_qf(t:xryi)+ pZCZAy[uz

(3.4)

Equation (3.4) is generalized to three-dimenstonal cases as:

+k aj;(tsx’yr)

— M ay =ho(i”l(t,x,y‘,z)-f(t,x,y,.,z))—qi(t,x,yf,z)-Aypz(’D

or (t,x,y,,z oT{1,x,y,,2) ar.(t,x,y,,2)
+p202Ay[ztx ! o . )+u, i 6*zy +pzcsz—-—]-(-—6ty—+
0

ot {ho(T; (I,x,yi,z)—f(t,x,yl.,z))— qi (l,x,y,,z)— Ayﬂzq)}_’_

&

~ O ol {t,x,¥,,2) o7, (1,x,¥,,2) T, (t,x,¥,,2)

T,—< p,C,Av| u =P~ tu 227 Wy poc, Ay— 35
lat{pzzyl:x ax z aZL pzzy 61‘ ( )

The first term in Eq. (3.5) has a negative sign when the outward drawn normal to the

thin layers has the same direction as the positive y-direction, otherwise it has a positive

sign. The term @ represents the thermal energy generated within the flowing thin fluid

film as a result of dissipation which is given as follows:

A Y
ox 0z oy oy o&x Oz

Where it is assumed that #,~0 within the thin flowing film. Terms such as

du,foy and &u,/dy may be given by their average values within the transverse
direction of the flowing film. When the thin layer is a moving solid -skin, then & =0,

and ¢’ will contain a term that represents the thermal energy generated as a result of
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friction between the surface of the moving solid skin and that of the adjacent domain as

follows:
q’ = p'P[Juxz + uzz] 3.7)

where u'is the friction coefficient and P is the normal stress acting on the thin skin to

maintain its contact with the adjacent domain. Equation (3.5) is reduced to:

ik.ﬂ“{;}%y—')=ho(n(r,x,y.-,z)—f(r,x,y,,z))—q‘(r,x,y‘,z)-Ayyzw(r,x,y,-,z)

LX), Lx,y, T (1, x, y.
b prcaA uxaT’(’x’y"z)w, oT,(t, %, y,,2) v prcdy (,%,9,.2)
ax az at

~, (Tt d . . oq'(t - 1,X,¥,
rlho T;(,x,y“Z)— f(t,x,}’nz) _rl q (,x’yi,Z)_rtAyﬂz aq)(!x yl Z)
ot ot ot ot

82TI (t’xsyi’z) (38)

ot

g ol oT(txy.z)  oT(tx,y,.2)
T, p,C, Ay —| u_— D7 py,
116 yar[ = o T &

]+ 7,016, Ay

Equation (3.8) is considered as the generalized thermal boundary condition for the
hyperbolic energy equation at the interface between the thin layer and its adjacent
domain, which can be used to solve the hyperbolic energy equation in the adjacent
(thick) domain. The derived boundary condition takes into account all possible effects
of the thin layer and its interaction with both the ambient conditions and the adjacent
domain. These effects are the thermal capacity of the thin layer, thermal diffusion in
different directions of the layer, enthalpy flow within the layer, friction and viscous
dissipated energy, convective losses from the skin, and other forms of incident energy

fluxes. Also, Eq. (3.8) takes into account the effect of time phase lag effect between the
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conduction heat flux and the temperature gradient in both the thin layer and its adjacent

domain.

Six boundary conditions may be considered as special cases of Eq. (3.8). To

obtain these cases, rewrite Eq. (3.8) in the following form:

i]?lkl aI‘](‘é}T!yl) _

Fh (T (t,x,,,2) - f.xy,2)-Fq'(t,xy,2)- F4Ay,u2(D(t, X, ¥, z)

oM(xy,7) |, OTxys)
ox ' oz

ot (¢, x,y,,2) N
ot

+Fspzcsz|:“x :l"‘Fspzcsz

aT, (1 ! ~ 0q'(t,x, ¥y, ~ oplt,x, y;,
1(’5;3’“2)_5“”;yi'z)]_m 590D oy, 0D7)

F,T.h
2%y a[ ot ot

o1, (1, x,,,2)
ot

FZ pac,Ay d [u,, o (tx%y,2) ,  OL(t%Y,2)

= E™ : 2 :|+Fs?1pzcsz

(3.9)

where F, , with i=1,23,............ 6, may have a value of 0 or 1depending on the
particular case. The six special cases of Eq. (3.9) are given as follows:
1. The first kind boundary condition.

For this kind: F1=F3=F4=F35=Fs=0, and Fz=1, and as a result:

7 000 gy, 0y -7 LD

t 3.10
6f 81‘ +f(sx,yisz) ( )

In the absence of thermal relaxation time, 7; = 0, Eq. (3.10) is reduced to:

Tl(’!x!yi!z) =f(t,x,2)
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which is the classical thermal boundary condition of the first kind for the parabolic
diffusion energy equation as in Eq. (2.8). The boundary condition given by the previous
.equation is also; known as Dirichlet boundary condition, which describes the behavior
of a boundary maintained at a prescribed temperature f{%,x,2).

2. The second kind boundary condition

For this kind: F,= F4= Fs= Fs=0, and F;=F3=1,and as a result:

OnL(.%,y1,2) _ 0 (,%%152) | iy ¢ 7) | (3.11)
dy ot '

The second kind boundary condition, which is called Neumann boundary condition, for

1k,

the classical diffusion energy equation is obtained from Eq. (3.11), with 7,=0,asin
Eq. (2.9):

0T, (t,x,y,,2)

Py =q'{t,x,2)

+k,

This boundary condition represents a prescribed heat flux g' imposed on the boundary.
3. The third kind or Robin boundary condition:
For this kind: F3= F4= Fs= F¢=0, and F;=F,=1, and as a result;

aT‘l(t’x’yi)

ik aT'l(t,x,yf,z)_af(t,x,yi,z))

=h (T\(t,x,y,,2) - f{t,x, Y, +7,h,
o(l(xyz) S@.xy z))+ 7, ( Y ar

(3.12)

In the limit of zero thermal relaxation time, Eq. (3.12) is reduced to the classical Robin

boundary condition derived for the parabolic energy equation as in Eq. (2.9):

th 5—1"(’—6;”—) o b (T %902 = T Y0 7))

This kind represents a convective heat transfer from the outer surface of the thin layer to

a prescribed ambient temperature f{7, x, 2).
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4. The fourth or Carslaw boundary condition:

For this kind: F;= F4= Fs=0, and F1=F3=Fs=1, and as a result:

_ . .~ oq'(,x,y,
iklia.géymz_q'(t,x’y“z).*_pzcszaﬂ(t’;;ynz)_rl aq ( :axt)ynz) +

9’1, (1,%,%:,2)
at?. ( )

7,06,y
In this kind of boundary condition, the heat capacity effect of the thin layer is taken into
consideration. A physical example of this kind is heat transfer into a large ceramic
object with a thin metal coating on the surface. The temperature distribution in the
metal coating may be neglected across the small thickness Ay because the thermal
conductivity of the metal is large far greater than that of ceramic, but storage of thermal
energy in the metal coating may not be neglected. This boundary condition can also

describe a surface film composed of a well-stirred fluid with heat capacity Ayp,c, . For

the parabolic energy equation, Eq. (3.13) is reduced to, Eq. (2.11):

s, Zh 20 (t’a;’ ) 10,5, 3,,2) + prcyty T XY E) (t’;;y‘ 2)

which is known in the literature as Carslaw boundary condition.
5. The fifth kind or Jaeger boundary condition:

For this kind: F3= F4= Fs=0, and F;=F,=F¢=1. As a result:

ikt—aT'%"—}iLh,,(zz(t,x,y,-,z)—f(r,x,y,-,z))+p,cZAy——-—aﬂ(";‘;y"z)+

62]'; (t’ x’yi’z)

o (3.14)

- [87}(t,x,y,.,z) af(t,x,y,,z)
Tlho -

a ar )'*'?lpzcsz

This kind of boundary condition takes into consideration heat losses from the film and it
is physically identical to the fourth kind except that, instead of a specified heat flux on

the outer surface of the thin layer, there is a specified heat transfer coefficient A,. In the
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limit of zero thermal relaxation time, Eq. (3.14) is reduced to the classical fifth kind, or

Jaeger, boundary condition, which is given in Eq. (2.12):

ikl gz‘%i}_}'l - ha(T;(f,JC,}’f,z)—f(t,x,y”z)) +p2c1Ayﬂt_’a£;!i’f_)-

6. The sixth kind boundary condition:
For this kind: F;= Fa= Fa= F4=Fs= F¢= 1.
In addition to the above mentioned six kinds of boundary conditions, there is the

zeroth kind boundary condition which can not be derived from the generalized kind

given by Eq. (3.9). The reason for this is that the zeroth kind boundary condition has no

physical content.

3.3 Generalized boundary condition for imperfect contact

When the thermal contact between the thin layer and its adjacent domain is
imperfect, then (1, x, y.,z)zT, (t,x, , ,z). The boundary condition for imperfect
contact situations is obtained by applying the balance of thermal energy on a differential

element of the thin layer, to obtain

orT,

o7,

. oT,
ha’(Tl "Tz)" ho(Tz = f)+ g+ Ayu, P~ p,c, By M, U, |~ chsz—_z =0
ox Oz ot
(3.15)
Also,
g, =h(,-T) (3.16)
Substitute Eq. (3.16) into (3.2) to yield:
o7, ~ 0
_kI?a}L:hi(ﬂ—TI)+rl-67[hi(n_Tz)] (3.17)

Equation (3.15) and (3.17) are solved for T, to get:
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ar,

. T, T
h(,-f)-4 —AYFz(D“'pozAY[I‘x et +u, — +pzcsz——a L+
‘ ox Oz ot

- 0 oT. o7, oT.
K3 'a{ho("rz - f)_ q' —Ayp,®+ pzcsz["x ’az"'*' u, ‘872]"’ P68y '_é;,z_} =

2 fr sty ) Loty L 2 ey T | T
vl h h h x> h o

h:' i i
(3.18)
A generalized thermal boundary condition for imperfect thermal contact is

obtained after solving Eq. (3.18) for 7, and substituting the obtained expression into Eq.

(3.15) to get the desired thermal boundary condition in terms of 7.

3.4 Case study

Consider the same case study as illustrated in Fig. 2.2(a). The elementary assumption

here is that the h?at propagates with a finite speed. This transforms the governing heat

conduction equation from parabolic into hypérbolic equation. The classical Fourier’s

model for conduction may breakdown under situations involving very low temperature

near absolute zero, extremely short transient duration, or very high heat flux. Under
 these circumstances, heat propagates with a finite speed. Thus, the hyperbolic heat

conduction model is suitable for accounting for the phenomena concerning the finite

propagation speed of the thermal wave.

3.4.1 Exact model

In this case, the energy equations coupled at the interface have to be solved. These

equations are written as:
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8T (x.1) _ dq,
ot Ox

P16

.0, oT, (x,t) __ dq,

ot ox
-~ Oq oT,
4+ Taa _8'71 =~k a—xl
.. 0g or,
BTy

Combining Egs. (3.19) and (3.21), (3.20) and (3.22), yields:

in 0gx<a

2 2
7,2 T.(:x) LORGD) 0 ﬂ(;c,r)
ot ot ax

7 8T, (x,1) A a, 9T, (x,1)
2 arz at axz

in as<x<b

which assume the following initial and boundary conditions are:

T,(x,0) = T(x,0) =T,

oT,(x,0) _ 9T, (x,0)

=00
ot ot
(0,1 =T,
oT, (b, 1) _ 0.0
ox

Ty(a,0) =T,(a,1)

ql(a,t) =4, (a»t)

Using the following dimensionless parameters

o T ~T, £ X
= , =, =, r:-—-,
T, -T a =g a’

w
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Equations (3.19-3.24) and their initial and boundary conditions become:

06, _ %,
on e
06, __ 180,
on  Cp 04
o0 0l
& +7, —37;—: _6_51
0 00
Q2+ q.2 Q2 = r :
on o&
5201 06, B 6’9,

T + =
g.1 anz an 652

o9, 00, 0,

Fa2 a?]’z * 677 r ag!
8,(¢£,0)=6,(£,0)=1.0

26,¢.0) _26,¢0)

on on
9] (03 7?) = 00
96,1 _ 4,
o¢

8,(,m=6,(,m)

0,(,n)=0,(.m)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

where K, =k, [k, is the thermal conductivity ratio, @, = a,/a, is the thermal

diffiusivity ratio, and R=b/a. From the definition of R, (R-1) represents the

b—a

dimensionless thickness of the thin layer (= ——). Now, with the notation that
a

L{Q({,’, m)}=W(&,S), Laplace transformation of Egs. (3.31) and (3.32), yields:
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dw,
-——déﬂ‘ —(rq,lS2 + S)W, = -(1 + rql,S) . (3.35)
2 S5t+ S8 S+1
e
a, a,

These two equations assume the following solutions:

W, (£,8)=C,e™"* +C,e™¢ +% (3.37)

W,(&,8) = Cye* +Ce™ +% (3.38)

7,57 +8
where M, =,Hrq‘1S2 +S) and M, = —qa——.

r

Also, with the notation that V' = L{Q}, Laplace transformation of Eq. (3.34) yields:

W,(0,8)=0.0
M (RS) _ o 4
73

(3.39)

w,(1,8) =W, (L,3)

V(1,8)=7,(15)
From Eqs. (3.29) and (3.30) with 0,(£,0)= 0,(£,0)=0.0 we have:

dw.
14 +Tq.|(SV1):_'d_§l

dw.

2

r dg

V,+7,,(8V,)=-K

with V] (1, S ) =V, (I,S ) , the second boundary condition at the interface becomes:

aw,(,5) {K, (1+7,, S)] aw,(1,)
e | {l+7,,9) d¥
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Insert Egs. (3.37) and (3.38) into (3.39) and solve for C,,C,,C,, and C,to yield:

K, [l+7, S\

\/_— (1+1'qz )

-

K, li+r,S

\/_ (l+r S

[

p;

ol

r

Iz (mﬂ s) )"

K, [l+7, SJ

K, l+7,,8 ](eM:(zR—Z)):I
) |

J— (1+r“

C, =— -,
oo, K, e SN [, K [We, S e
] ¢ ( Ja, (1+r s) +(1 Ja, (1+rq,2S)J(e )
1+ >
K, [l+7,8 ( 1+7,08) | ar,2re2)
|i[ Ja, (1+r S)]+\1+\/_ (1+r S)](e )
C, = mil) -,
LK [, S\ K, (l+7,§ (e2eten-2)
€
. J_ (l+r S) J_ (1+rq2 S) 5
<

r

K 1+TSJ(
+

K, ll+7,§ M,(2R-2
Ja, (1+r S)J(e | ))}

k{[

Ce*" + C,e™
oM (] +eM,(2R-z))

and C, ={ Cle"’. +C2eM:

2RM,
M (1 +eM,(2R—2))} €

Equations (3.37) and (3.38) are inverted numerically using a computer program based

\/_ (1+'rq2 )

C, =

on Riemann-sum approximatton as:

(3.40)

Ok(é,n)‘:’-e;[%wk(é’.r)+fieg W, [é’ r+ﬂJ( 1)’ ]

Equation (3.40) yields the exact temperature distribution in both domains for the perfect

contact hyperbolic heat conduction model case.
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3.4.2 Approximate model

In this case, we intend to solve one energy equation in the thick domain (domain 1)
and ignore the existence of the thin layer and replace its thermal effect by using the
generalized thermal boundary condition at the thick domain interfacial boundary with
the thin domain. It will be assumed that the two layers are in perfect thermal contact and
the thin layer is thin enough so it has the same lumped temperature in its transverse
direction. This temperature is equal to the temperature at the interface between the thin

and the thick domains. The thick domain energy equation is given as:

. &% o _ L

T = T e in 0O<x<a (3.41)

which assumes the following initial and boundary conditions:

T,(x0)=7,
(3.42)
9(x0)
on
T,(0,0)=T, ‘
(3.43)
oT (a,t o (a,l) . 0°T (a,1)
-k, ——%x—)— p,c,(® _a)“——lét ) _ To P26 (b —af)——(,;t(2 =0.0

The second equation in (3.43) represents the generalized hyperbolic thermal boundary
condition, which takes into account three thermal effects of the eliminated thin layer.
These three effects are the thermal storage of the thin layer, thermal diffusion in the thin
film transverse direction and the time phase lag effect between the conduction heat flux
and the temperature gradient in both the thin layer and its adjacent domain. Using the

following dimensionless parameters.

T-T X at TQ
9= w, =, :—l—, r:__l
T,-T d a (e a’

w

Equations (3.41), (3.42) and (3.43) become:
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6291 (5: T]) + 691(5:’7) — 6291(5,1]) in 0< ; <1.0 (3_44)

q.1 anl an 652

6,(£,0)=1.0

| (3.45)
on

6,(0,7)=0.0

2

691(1:77)+H ‘agl(lnn).*“r la 91(1;,77) =00 (346)
& on * on

where H = K, (R-1) and R=¥a In a manner similar to what has been done

a

r

previously, using Laplace transformation technique, Eqs. (3.44) and (3.46) assume the

following solution in the Laplacian domain.

W.(£,5) = Ae™E + Be™ +~;- | (3.47)
where M, :.J‘rql,S2 +Sj,
|
1
i e"”-(l—H,/ir S’+Si)
A= M p ol 3 and

-1 |
e -n e, 5" +5))|

1+ -—

i+ 114,57 +5))

Equation (3.47) is inverted numerically using a computer program based on Riemann-

sum approximation as:

0, (e:,n)s"—:—[éwl(:,r)+Re)i Hﬂ[.f,wffﬁ(—l)"] (3.48)
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Equation (3.48) represents the approximate temperature distribution in the thick

domain.
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4- DUAL PHASE MODEL

j

4.1 Introduction

The Cattaneo and Vernotte wave model assumes an instantaneous heat flow. The
temberature gradient is always the cause for the heat transfer, while the heat flux vector
is always the effect. The dual-phase-lag model aims to remove the precedence
assumpfion made in the thermal wave model. It allows either the temperature gradient
(cause) to precede the heat flux vector (effect) or the heat flux vector (cause) to precede
the temperature gradient (effect). Mathematically, Tzou (1995a- ¢) represents this

model as:

q(x,t+%“q)=-—kVT(x,t+?T) (4.1

where T,is the phase lag of the temperature gradient and 7 is the phase lag of the heat
1

flux vector. For the case 7, > 7,, the temperature gradient established across a material

volume is a result of the heat flow, implying that the heat flux vector is the cause and

the temperature gradient is the effect. For 7, <7, on the other hand, heat flow is

induced by the temperature gradient established at an earlier time, implying that the

temperature gradient is the cause, while the heat flux vector is the effect.

4.2 Mathematical formulation

The case study shown in Fig. (2.22) is considered here. In this case, the energy

equations coupled at the interface have to be solved. These equations are written as:
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: ox
o1, g,
©27 5 T T o &:
~ Oq o7, . O
T T G Mg
~ 0Og, oI, - 0T,

q,+ q,l_a':_’cz'gx_—xzr:r.z o

When Egs. (4.2) and (4.4), (4.3) and (4.5), are combined yield:

T, . o1, 1% - @ngﬁn+ﬂJ#ﬂ
1

LT ——r— T
x? Tlaext ok, o) a 0 o orf

ar, . o, 1 . dg,] 10T, T, 0,
8, = +

AT, —| g, +T
a? Ttaox  k, 5 | a, & a, o

Initial and boundary conditions:

T,(x0)=T,(x.0)=T,

aT, ar,

0 {x0)= 0)=0
ot (x:0) ot (x0)
7,(0,6)=T,

a1,
Ox

Tl(a’t):: 7, (a,t)

QI(a’t)= ‘h(a-t)

(6,)=0

using the following dimensionless parameters
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(4.3)

(4.4)

(4.5)

(4.6)

4.7

(4.8)

4.9
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.f=£ 9:T-—Tw _toy T__?a,
a T,-T ’ 27 a

__4qa
O k, AT

Equations (4.2), (4.3), (4.4) and (4.5) in dimensionless form become:

%___GQL+G
on o !

00, __ 120

on  C, 0f
o0 00, lel7)
O+ Taa a_';' = —_éf_l_ Tra 5;]5;52

0,41, =K, -1

00, _x[ 2 31922
on o8 T anos

equations (4.6) and (4.7) are reduced to:

828’+r %, +{ G+t %5 _691+1_ o%0,
652 T. anagl 1 q.1 an a?] q.1 anz

_Kr

+ T, —an

00, %0, CR[ ez an} CR{QQL .

+T +
oer  TPonag® K, on

C
h ZR _ 0 _ -
where i

Initial and boundary conditions

6,(£,0)=6,(£,0)=1.0

2,

06, ()
i20)- 22 (e0)-00

45

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Te2 -6_172_

2°0, ] (4.15)

(4.16)
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GI(O,T]) = 0.0

4.17)

91(1,’?)= , (1,?]) |
2.(,7)=2,(,7)

Now, assume there is no heating source (G, =G, =0.0)) with the notation that

w(&,S)= L{6(£,7)}, Laplace transformation of Eqs. (4.14) and (4.15), yield:

d*w, dw,
d;z Tra

In other form:

} SW,~1+7,,(s* W, - 5)

1
dln’/l _ S+T‘i’,l S W = 1+Tq,lS (4 ]8)
et |1+, 8 |1 0+, S '
Also, '
d*W, ?
d§22 +1’T.2[de?:2J L(sw, -1)+ 22 (s*w, - 5)
ar r

In other form:

2 S+r, §? 1+7 .S
. _ L W, =- fas (4.19)
de? | (l+1,,8)e, 0+ Ty, S)a,

equations (4.18) and (4.19) assume the following solutions:

w,=C,e** +C,e*" +% (4.20)
W,=C,et* +C, e ™ +-é— (4.21)
here A, S+7,,8? 41 S+rt,,S8
whnere = _— = .
1+7.,8 ? 0+ rmSia,
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Also, with the notation that V' = L{Q}, Laplace transformation of Eq. {4.17), yields:

,(0,5)=0.0

dw,

3 (R,8)=0.0

(4.22)
w,1,5)=w,(.5)

7 1.5)=7,(,5)

From Egs. (4.12) and (4.13) with 0,(£,0)= 0,(£,0)= 0.0, we have:

aw. aw,
i+t (SV1)= _"d_;"' rr,l(Sjg‘J

aw. dw.
Vat+t,, (SVz):krIi—";é_._z_rr.z[S d;’z J:‘

V,and V, can be expressed as:

1+7.,5 | dW,
v.(£,8)= _(H - ) (4.232)

1+7,,S | dW,
Vz(é,S)——K{H%SJ[ dE J (4.23b)

with ¥,{1,5)=¥,(1,5), the second boundary condition at the interface becomes:

() (op

K (+7,8) 1+, S)il

h =
where ¥ [ (+7,,5) (+z,9)

Insert Eqs. (4.20) and (4.21) into (4.22) and solve for C,,C,,C,, and C,to yield:
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By 'MK”‘PA} [l"w%jem_zs]w
AT

C, = ‘
111
11+ >
1—\1'-;—2 14w onn)
“ A‘ A] <
_L
C, = S :
e l:[l+‘1’l—2]+(l—‘l’-l—2}e"(m'2)}
A A
<1+ >
[(1—‘1’1’—}+(1+‘Pﬁ}‘=(”‘”]
L 'a’l ﬁ"l
C. - C,e" +C,e™™
P e (I +e*1(m’2))
and C, = Creh +Cre™ i

et (1 + e"“‘(m'z))e

where \yﬁ=‘j((l+fr.zsxl+fq,15))

4 Wi, SNi+7,,9)
Equations (4.20) and (4.21) are inverted using a computer program based on Riemann-

sum approximation as:

0. (¢, n)—-—[ w,(&,7)+ Rez W( y‘+ 3'-5](—1) } (2.24)

Equation (2.24) yields the exact temperature distribution in both domains for the perfect

contact dual phase heat conduction model case.
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?.3 Heat flux calculations

To find the heat flux in the two domains Eqs. (4.23a) and (4.23b) are inverted

using a computer program based on Riemann-sum approximation as:

IIE

0,(6m) n[ AR BO WAL +ﬂ£)(-1)} @25)

Equation (2.25) yields the exact heat flux in both domains for the perfect contact dual
phase heat conduction model case. The computer model results with changing thickness
ratios, thermal diffusivity ratios, thermal conducfivity ratios and thermal relaxation time

were exhibited in the figures in chapter 7, which will be analyzed later.
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5- PARABOLIC, HYPERBOLIC AND DUAL PHASE
MODELS FOR IMPERFECT CONTACT

5.1 Introduction

Although neglected until now, it is important to recognize that, in composite
systems, the temperature drop across the interface between materials may be
appreciable. This temperature change is attributed to what is known as the thermal

contact resistance, R,,. The effect is shown in Fig. 5.1, and for aunit area of the

interface, the resistance 1s defined as

T, T,

R.t,c = -
q x

(5.1)

The existence of a finite contact resistance is due principally to surface roughness
effect. Contact spots are interspersed with gaps that are, in most instances, air filled.
Heat transfer is therefore due to conduction across the actual contact area and to
conduction and/or radiation across the gaps. The contact resistance may be viewed as
two parallel resistances: that due to the contact spots and that due to the gaps. The
contact area is typically small, and especially for rough surfaces, the major contribution
to the resistance is made by the gaps.

For solids whose thermal conductivity exceeds tflat of the interfacial fluid, the
contact resistance may be reduced by increasing the area of the contact spots. Such an
increase may be effected by increasing the joint pressure and/or by reducing the
roughness of the mating surfaces. Selecting an interfacial fluid of large thermal

conductivity may also reduce the contact resistance. In this respect, no fluid (an
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evacuated interface) eliminates conduction across the gap, thereby increasing the

. contact resistance.

Figure 5.1: Temperature drop due to thermal contact resistance.

5.2 Parabolic heat conduction model for imperfect contact

In a manner similar to what has been done for perfect contact, two energy
equations coupled at the interface have to be solved with different interfacial boundary
conditions. In the case of perfect contact the temperatures at the interface are equal
while in this case the temperatures at the interface are related as:
a,(L.7) = h[L,0.n)-T, ()]
where 1 and 2 refer to domain A and B respectively and £ is the interfacial convective

heat transfer coefficient. The energy equations in dimensionless form are given as:

2
o6 9% in 0<E<10 (52)
0&*  on

2

06, 129, in 1.0<Z<R (5.3)
o0& a, on
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Subject to the following initial and boundary conditions:
6, (£,0)= 8,(£,0)= 1.0 (5.4)

6,(0,77) = 0.0

692 (RJ?) =00
o¢ '
(5.5)

0.(,7)=0,(,n)

O, (1, 7?) = Bi(gl (1:77) -6, (1: 77)):

where (), = _99

79

The first boundary condition at the interface yields:

26,0Lm) _ , 90,(L.7)
of o

where Bi is Biot number defined as ha/k, .
Now, with the notation that L{E)(c_f, 1])} =W (&,S), Laplace transformation of Eqs. (5.2)

and (5.3) yields:

dl
J?‘S’y‘:"
2
V.
d ;: Sy oL
dg* a, a,

These equations assume the following solutions:

W,(&,8)=Cet® +Cet +-;: (5.6)
W,(£,5) = Coet T +C eV w% (5.7)

Also, with the notation that V' = L{Q}, Laplace transformation of Eq. (5.5) yields:
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,(0,8)=00

isz(R,S)_O
or

0

A (0LS) _ o dW,(S)
o T o

V,(,8) = Bi(w,(1,8) - W,(1,5))

where 4(.5) - 2242

Insert Egs. (5.6) and (5.7) into (5.8) and solve for C,,C,,C;, and C, toyield:

e 28 [B;_M},(em—uﬁi{ Bi+ K,(JE - Bi )}}
1) Jo, V= JJ|
5 Bi—Kr(JE-l-Bi! +(e(m-2),j§7?¢: Bi+K'!J§+Bi'
JE: ‘ a, ,
C, = ~ \
25 pi - K, JS - Bi . (e(zR-z)J&E Bi+ K,(\/E—Bi_)
1+ JZ \/—CZ L
)
Bi- K'(‘/§+ BiJ, (e(”“”'ﬁiZ Bi+ M
Ja, Ja,
_1
C, = S —
e 25| Bi K, JS - Bi +(e(z};-z)J.s/_a, Bi+ K,!JE—B; ’}
1 Ja, Jo, JJ|
11+
Bi- K,!\/E+Bi_) +(e(2R-2)m Bi+ K, JS +Bi
Ja, a,
c G (ﬁ+Bz‘) e -C, (JE*B,-)e-JE
, =

BieVsi® (1 + eJﬁ(ZR—!))

Cl\JS +Bi JE—C \/E—-B' -Js
o C4={ l( ;8;3);(1+8J%(;:(m_2))')e }ezw,_
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Equations (5.6) and (5.7) are inverted using a computer program based on Riemann-

sum approximation as:

ouen)= | L) me, W[¢y+—](—1)]

(5.9)

Equation (5.9) yields the exact temperature distribution in both domains for the

imperfect contact parabolic heat conduction model case.

5.2 Hyperbolic model for imperfect contact

In a manner similar to what has been done for perfect contact, the energy

equations coupled at the interface have to be solved with different interfacial boundary

conditions. In the case of perfect contact the temperatures at the interface are equaled

while in this case the temperatures at the interface are related as:

a.m) = 7 6.) -1, 0,7)]

The energy equations in dimensionless form are given as:

90, _ %
on o
06, __ 1%
on C o&
o0 06
O+ Tan 5 ™ " E
Q
Q2+rqz a?; ==K, EY:

Egs. (5.10) and (5.12), (5.11) and (5.13), are combined to yield:

9%, 806, 80,

+ =
Fargn Ton  8f?

80, a0,

+—t=a

r — ——
q.2 an‘z an r 6151
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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Subject to the following initial and boundary conditions:

Ql (670) = 92(6,0) =1.0

26,(£,0) _ 20,6.0) _

on on
6,(0,7)=00
692 (RJ?) — 00
44

0.(Lm)=0,(1,m)

o, (1,77) = Bi(@i (U?) -0, (1:77))

Laplace transformation of Eqs. (5.14) and (5.15), yields:

d*w,

_T_

2
dw, (£a87+S\ 7,,5+1
de? a, : a,

(r,, 52 + S, =—(1+7,,5)

These two equations assume the following solutions:

W (&£,8)=Ce™* +Ce™t +§

W,(£,8) = Ce® + Ce™# +%

7,87 +8
where Ml =,}(rq_lS2 +S’ and Mz = JT .

r

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

Also, with the notation that ¥ = L{Q}, Laplace transformation of Eq. (5.17) yields:

w,(0,5) = 0.0
RS 49
74

%1,8)=7,(1.5)
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From Egs. (5.12) and (5.13) with 0,(£,0)=0,(£,0)=00and ¥,(1,8)=V;(1,5), we

(j)btain:
aw,(1,S) _ K, (147, 8)) am,(,5) (5.22¢)
a | (+z,8) | at '

Also, the second interfacial boundary condition becomes:

A (L.5) W;g’s ) o Bift+,, S)m0,5)-m.0,5)] (5229

Insert Egs. (5.20) and (5.21) into (5.22a-5.22d) and solve theses equafions for

C,,C,,Cyand C, to yield:

_ o KM -B) |t+z S ]
M, M, (2R-2) r 1 gl Y/ My(ar-2)
[ 1] e [ﬁ(lﬂz )+ \/E,— (1+rq,2 S)(e 1)}

J
Kr (Ml + /B) 1+ Tan S M, {2R-2) M, {2R-2)
| [ i S)(e ~1)+ g1+ 2 0nY)

e [ﬁ(l+ eul(m_z))+ K, (346:7" ﬁ) (:::q,l i)(eu,(zn-z) _ 1)]
r 9,2

K Ml 1 lS M,{2R-2 M,2R-2
[ ,(Ja_+ﬂ) (1::%25)(3 on2) 1) g1+ el ))}

1

CIZ, S >

R e s | T
r 4.2

l:Kr (3’27'* ﬂ) (11_'::::41.1 i)(eM,(zn—z) ——])+ﬂ(l+e“‘(m'2)):|

v

1+

e

= Cl(Ml +ﬂ)€_M' _'Cz(Mg _ﬁ)e-M,

pe (1 + eM;(m-z)) and

Cy

C,(M, + B)e™ —C, (M, = B)e™ | s
C, = — - e’
fe M, (1+8M,(2R 2))
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where = —Bi (1 +7,, S)

Equations (5.20) and (5.21) are inverted using a computer program based on Riemann-

sum approximation as:

o= tmeryened m a7 ey |

4
n

This equation yields the exact temperature distribution in both domains for the

imperfect contact hyperbolic heat conduction model case.

5.4 Dual phase model for imperfect contact

In this case the temperatures at the interface are related as:

q,(1,m)=h[5(Ln)- T, (7))

The energy equations in dimensionless form are given as:

bal?)
_._‘:__ag.{_G]
on o&
o0 1 "
2 - 6Q2 -i-G2
on Cp, 0§
Q.+Tq.|%=-?"9—'—f %,

“an o¢ T onag’

3, o0 o0
0, +7q,2—Q'2"=Kr "‘-'i_fr.z"'—zi‘
on of onoé

Combine Eqgs. (5.23) and (5.25), (5.24) and (5.26), to get:

80, 9°0, oG, | 00, 90,
LT, —+| G+ 1, —L =+
oF ondéE an | on an
98, a0 Cq C,| 96, 8’0,
2 T.2 2 2+ Tg0 = Te2 3
o0& onoé: K, on K,| on on
Co_a_

where

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)
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Subject to the following initial and boundary conditions

6,(£.0)=6,(£.0)=1.0

(5.29)
9, (+ 0y= 292 (£ 0) =
S (20)=5e0)=00
6,(0,7)=0.0
00, _
EE—(R, 7)=0.0
(5.30)

0,(L.m)=0,{1.n)

Ql (l,n)z Bi [91 (1:?7)_92(1’7])]
Now, assume there is no heating source (G, =G, =0.0) with the notation that

w(E,S )= L{B(g, 17)}, Laplace transformation of Egs. (5.27) and (5.28), yields:
2 S+r, §* 1+7..8
d H:‘ - U | = e (5.31)
d¢ 1+z,, 8 1+7,,8

f
2 S+, 8 1+7,,S
d ”:2 - MW, =- o (5.32)
det ({41, S)a, (+7p, S)ea,

-Equations (5.31) and (5.32) assume the following solutions:

W, =C, et +C,e*n +% (5.33)

W,=C,e*" +C et +% - , (5.34)

S+r,,5° ’iS+T s?)
where 4, = [ —*—| and 4, = 2.2 .
: [ 1+, } TV rmSja,
Also, with the notation that ¥ = L{Q}, Laplace transformation of Eq. (5.30), yields:

w,(0,8)=0.0

58

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



dgg 2(R,S8)=0.0 (5.35a)

K0,8)=70.5) |
From Egs. (5.27) and (5.28) with Q,(£,0)=(,(£,0)=0.0 and ¥,(1,8)=V,(1,5), we

have:

[dW, G, S)] ) {K, (142,,8)(+7,, S)}[ daw, (l,S)J (5.35b)

dé& (+z,,S8) ez, S)  a¢

K,(1+z',,'2 S) (1+rq" S)}

“ W{ Wer,.8) Urens)

Equation (5.35b) is expressed as:

)

Also, the second interfacial boundary condition becomes:

). —B{-——i L J[W‘ (1.5)-,00,5] (5359

I+7_,8
let @ = &
147, 8

Equation {5.35c¢) is expressed as:

dw,(1,5)
dé

Insert Egs. (5.33) and (5.34) into (5.35a-5.35d) and solve these equations for

=-Bio[w,(1,8)-w,(1,5)] (5.35d)

C,,C,,C,and C, to yield:
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: [[B:CD lP’11 (4, - B:CD)] (Bi(b+‘l’i—2(ﬂ1— Biq;)]ezztm—z)}
J— 1 |
( S] KB:‘(D—‘PZZ(/L +Bi<D)J+(Bi(D +‘P%(Z,+Bz’¢)}e‘z(m-2)} |

C = ,
e [[Bf O-¥ (2 —Bitb)]+[Bi<I)+‘Pﬁ—’(/l1 —-Bid))}e‘*(m")}
<1+ 4 A
[(Bid)—‘?ili(/ll +Bi(I))J+(Bi(D+‘P—;L—2(ﬂq +Bi<1>)]e"(””):|
A 2
_1
C, = S .
KB:(D yha 2 (4 Bch)J (B:<D+‘P 2(4: qu))J (2R z)}
<1+ A A i
[o-v2 o) (moree o]
c, - Ci(4 + Bi®)eh —Cy (A —Bi®)e™

Bi®e™ (1 + ghlR- 2))

Bi®e™ 1 +e27)

where \p.ﬂil. _ (1 + rmSXI + rq‘lS)
A (1 + fmSXl + Tq.z'S)

Equations (5.33) and (5.34) are inverted using a computer program based on Riemann-

{C, (4, + Bid)e* —C, (4, —Bi(D)e""} 1R
C, = e,

sum approximation as:

0,(&.n)="— [ w,(£.7) +ReZ W, [e‘ +’~'3£J(— )} (5.36)

n=1

Equation (5.36) yields the exact temperature distribution in both domains for the

imperfect contact dual phase heat conduction model case.
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6- PERTURBATION TECHNIQUE

6.1 Introduction

Knowledge of transient convective heat transfer is of importance in a number of
different physical situations such as the starting, ending and change in power level
transients in gas turbine engines, recuperative and regenerative heat exchangers, and
cooling passages in nuclear power reactors. Practically speaking, most problems of this
type are conjugated problems, that is., the temperature distribution in the moving fluid
is mutually coupled to the temperature distribution in the solid body over, or through,
which the fluid flows.

The behavior of forced convection conjugated heat transfer problems is
described using two energy equations coupled at the interface between the solid and the
- fluid domains. It is not easy to solve the coupled energy equations, even after
eliminating the coupling between them. The elimination of the coupling between the
two equations yields a single equation, which contains higher-order mixed derivatives
in both time and space. The appearance of such terms complicates the solution
methodology. However, there are certain applications in which the convective heat
transfer coefficient between the flowing fluid and the solid wall is high. As the
convective heat transfer coefficient increases, the normalized temperature difference
between the fluid and the solid-wall becomes small, but not negligible. This small
temperature difference between the fluid and the solid domains is observed, especially
in applications having high convective heat transfer coefficients or in applications
having small fluid flow rates. A small fluid flow rate gives the fluid enough time to

exchange its energy with the solid domain, and as a result the fluid temperature
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| approaches that of the solid domain. When the temperature difference between the fluid
and the solid domains becomes small enough, then this difference may be normalized in
the form of a perturbed quantity. As a result, a perturbation technique may be used to
eliminate the coupling between the two energy equations. The elimination of this
coupling produces two uncoupled partial differential equations which have the same
order as the original coupled partial differential equations and which do not contain any
mixed derivative terms.
The aim of the present work is to present a simplified perturbation technique to

~ reformulate the two coupled energy equations of both the solid and the fluid domains.
As an example, we consider a simple problem, which is solved numerically, using the

proposed perturbation technique and the results are compared with the exact solution.

6.2 Analysis
Consider the transient conjugate forced convection heat transfer problem in
circular channel of finite wall thickness as shown in Fig. 6.1. The flowing fluid in this
channel is a steady slug flow of constant velocity with constant physical properties. The
transient aspects in the thermal behavior of the channel are produced from the
unsteadiness in the inlet fluid temperature, ambient conditions and fluid flow rate. The
thermal behavior of the channel is assumed to be lumped radially. Also, it is assumed
that there is no heat generation within the fluid and solid domains and there is no
“imposed heat flux on the outer bouﬁdary of the solid wall. As the result, the problem is
described by the following two energy equations for the fluid and solid wall,

respectively, (Al-Nimr and El-Shaarawi, 1992).
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A
7,,h,
X
Solid domain \
n r
—
V,T, Fluid domain >z
\
Solid domain )
L
| g
Figure 6.1: Schematic diagram of the problem
oT, or’ o'T
I f S
et V——+b\T, - T, )-b,—~=0 6.1
ot &z (0, -7.)-2 o’ €.1)
oT, . 0'T,
~a-t-—b3(T,—1,)+b4(7;~Tm)-b, =0 (6.2)
2h, k 2h,
where b, = —, by = fz, by = ,zr, 1)’
pfcfrl pfcfrl psc.r rZ _rl
2h,r k,
b, = el and by = -
p.rcs r2 —rl pscsrl

The energy ecquations in dimensionless form for the fluid and solid wall respectively,

are.
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o8, 006 9%9

-—f+—L+H,(0f—9,)-H2——2L=0.0 (6.3)
on 9 a5

a0, %0,

67) _HB(GI_03)+H4(0:_0m)FH5_5_§3-=0’0 (64)

where the dimensionless parameters are defined as:

r-T z v
9= ud 5 =—, — —
To_Tuo § 1 ’7 rl

In the above dimensionless parameters, T, and T, are selected as a reference ambient
and inlet fluid temperatures, respectively, and ¥ is a given velocity. The different
parameters, which appear in Eqgs. (6.3) and (6.4) are defined as:

2k a 2h, 1} 2h
H, = - ,H2=-L,H3 & , Hy= ar;rl 2 aﬂst:i
Vpre, = ¥V ) l'/,c:v,c:(r2 -n ) Vr

1 - Vp.lc.r(rlz _'»'lz

where {k,,h,) are the inside and outside thermal conductivity, (r,,r, )are the inner and

i* o

outer radius of the channel and (p /€ f), (p,c,)are the density and specific heat of the

fluid and the solid wall respectively.

The assumption that the thermal behavior of the channel is lumped radially is
justified in channels having r, /L <<1, and Pe <50, especially for locations far from the
entrance of the channel, (Al-Nimr,1993). Analytical or numerical solutions of Egs. (6.3)
and (6.4) are not an easy matter, and if it is obtained, it will have a complicated form.
The reason for this is that Egs. (6.3) and (6.4) are two coupled partial differential
equations which are second order in space and first order in time. Eliminating the
coupling between these equations yields a mixed-derivative partial differential equation,
which is fourth order in space and second order in time. The higher order and mixed-
derivative terms that appear in the resulting equations raise the difficulty of solving such

problems. However, in many applications, the coupling between the two energy Eqgs.
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(6.3) and (6.4) may be eliminated without raising the order of the resulting partial
differential equations and without the appearance of mixed-derivative terms. These
applications involve situations in which the convective heat transfer coefficient between
the flowing fluid and the solid-wall is large. In these applications, the difference
between the solid and fluid temperatures may be normalized in the form of a small-

perturbed quantity. This difference may be written as:
0,(6.m)=0,(£.n)+ ¢ 8(¢.m) (©.5)
where A(£,77) is a function of space and time, and ¢ = 1/H, is a dimensionless small

parameter.

Consider, for an example, flowing mercury in a finite wall thickness duct. The

mercury has small velocity (¥=0.00/ m/s} and the interface heat transfer coefficient
h, between the liquid metal and the solid wall varies in the rage 50-20000 W/ m’k.Asa

result, £=0.03, which is small enough to be considered as a perturbed quantity. Now,

~ Egs. (6.3) and (6.4) can be written as:

a0 a0 86
LM, LM, LM, (0, -6,)=0(c) (6.6)
o 95 on
H.{80, 80 8’0, -
Alg )= =L+ =L -H,—T 6.7
) Ht[a“ag T ©7
where:
M, = 1 , | = (I/H1+1/H3) and
HI(H1/H1+H5/H3) (HI/H1+H5/H3)
H,

M, =
H3(H2/Hl +H5/H3)
Equation (6.6) is obtained by combining Eqs. (6.3) and (6.4) and Eq. (6.7) is obtained

from Eq. (6.3) taking recourse to Eq. (6.5). Itis clear that Eq. (6.6) is simple partial
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differential equation which has the same order as that of the original governing Eqs.
(6.3) and (6.4) and which has no mixed-derivative terms. It is worth mentioning that the
previous analysis is valid even if the original governing Egs. (6.3) and (6.4) contain

temperature-dependent thermal properties.
6.3 Case study

Consider the case in which a steady slug flow of constant velocity ( }7) flowing into a
semi-infinite channel having finite wall thickness. The semi-infinite length assumption
is found to be true if Fo(14+Pe)<<l, as reported by (Issa and AL-Nimr, 1989). This
condition requires that the sum of the energy transferred by conduction and convection
is much less than the energy stored in the fluid. Also, it is assumed that there is no heat
generation within the fluid and solid domains, the axial conduction both in the fluid and
in the solid wéll is negligible and there is no imposed heat flux on the outer boundary of
the solid wall. Initially, both domains of the channel are in the thermal eqﬁi]ibrium with

a constant ambient condition 7. . Suddenly, a fluid having temperature 7, different

from the ambient one, starts entering the channel causing the unsteadiness in the
thermal behavior of the channel. The thermal behavior of the channel as described by

the exact and approximate perturbation models is given in the following two parts.

6.3.1 Exact model

In this case, two energy equations coupled at the interface have to be solved. As a result

of the above assumptions, Egs. (6.3) and (6.4) are reduced to:

00, 00
—a;fq-FéwLH,(ef ~9,)=00 (6.8)
%%—Hg(e, ~0.)+H,(6,-6,)=00 (6.9)
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Subject to the following initial and boundary conditions

0,(£,0)=6,(£,0)=0.0 (6.10)
0,(0,7)=1.0 | - (6.11)
Now, with the notation that L{0 L (&, n)}= w,(&,S), Laplace transformation of Eqgs. (6.8)

and (6.9), yields:

)=00

dw,
sw,+—L 1, (w,-w,
dg

daw
—dgf—+(Hl +SW, —H, W, =00 (6.12)

SW,-H W, -W, )+ H,W,=00

ALY

s m (6.13)

Substitute (6.13) into (6.12) yields

aw

3 __HH,
YT +[(H‘+S) 6

— s iw =00 6.14
+H,+H.)] 4 ©.14)

This equation assumes the following solution

W,=Ce™* _ (6.15)

where o, = [(H, + S)—(?%—I-{m]
3 4

Also, Laplace transformation of Eq. (6.11) yields:
w,(0,8)= ! 6.16
rO3)=3 (6.16)
In term of Eq.(6.16), Eq.(6.15) is rewritten as:
1
W,(&;,S):Ee 8 (6.17)

Equation (6.17) is inverted numerically using Riemann-sum approximation as:
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0,(&m)= %BW;(MFR‘%Z W,[ y+£}(—l)} (6.18)

Equation (6.18) yields the exact temperature distribution in the fluid domain. The

computer model results with changing the H,, H,,and H, parameters were exhibited in

the figures in chapter 7, which will be analyzed later.

6.3.2 Approximate model

In this case, we intend to solve one energy equation in the fluid domain.

08, 06,
—~— 4N, —=+N,0,=0 6.19
5t Mg 0, =0(e) (6.19)

H HH o . : .
2 N, =—1"%_and the temperature difference is obtained In

where N, =———, N,
H,+H, H,+H,

terms of GI as:

-2 22) -
on  oF

Equation (6.19) has the following initial and boundary conditions:

0,(£,0)=0.0 6.21)

0,(0,7)=1.0 6.22)

Laplace transformation of Egs. (6.19) and (6.22), with the notation that

L{OJr (&, n)} é’ (£,S) yields the following equations:

aw
L +[N2+S]Wf =00 (6.23)
d& N,
1
w,(0,8)= 3 ) (6.24)
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In a manner similar to what has been done previously, using Laplace transformation

fechnique, Egs. (6.23) and (6.24) assume the following solution in the Laplacian

domain:
1 :
w (&, S)=Ee 16 (6.25)
where o, =M
Nl

Equation (6.25) is inverted numerically using a computer program based on Riemann-

sum approximation as:
e’ 1 Y inm "
0;(5,11)57 EWf(§,7)+R°Z w, §,y+T (-1) (6.26)
n=l

Equation (6.26) yields the approximate temperature distribution in the fluid domain.
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7- RESULTS AND DISCUSIONS

7.1 Generalized boundary condition for the parabolic heat conduction

model

The mathematical models described in the previous chapters were solved in a
computer simulation program and the results are illustrated in Figs. 7.1 through 7.53.
Figures (7.1-7.3) show the exact and the approximate transient temperature variation in
the thick domain for certain values of thickness ratio, thermal diffusivity ratio and
thermal conductivity ratio. These figures demonstrate that both models give almost the
same predictions according to the values summarized in Table (7.1).

Figures (7.4-7.6) show the effect of @, and X, on the transient temperature
difference at different thickness ratio (R). Therefore, from these figures the difference in
the dimensionless  temperature between the exact and the approximate models does not
exceed 0.035. Fig. (7.7) shows the effect of @, and X, onthe percentage transient

temperature  difference between the  exact and the approximate models

l guacl - gapprcm'mat

| )

l*lOO% Figures (7.8 and 7.9) show clearly the effect of a, onthe

exact
transient temperature variation for both models. It is obvious that when «, increases
above the values shown in Table (7.1) at any R, the deviation between both models
decreases and when @, decreases the deviation between both models increases. Figure
(7.10) shows comparisons between the e>;act and the approximate transient temperature
distributions at different thermal conductivity ratios. The approximate temperature
distribution is obtained by solving the thick domain energy equation using the

appropriate generalized thermal boundary condition. Figures (7.11 and 7.12) show a
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comparison between the exact and the approximate traﬁsient temperéture distributtons
at different thickness ratio (R). The approximate temperatlire distribution is obtained by
solving the thick domain energy equation using the appropriate generalized thermal
boundary condition. These figures show that the deviation in the transient temperature
distribution between both models decreases as R decreases and the deviation increases
as R increases.

Figures (7.13-7.18) show the effect of @,, K, and R on the dimensionless

. Figures (7.13 and 7.14)

temperature difference which is deﬁnea as |, —BGPMM,
show the effect of &, on the temperature difference between the predictions of the exact
and the approximate models. It is obvious that the validity of using the generalized
boundary condition is secured as e, increases. Using thin film of large a, implies that
the thin film has high a,or the thick domain has low «,. The thin film thermal
diffusivity @, may be increased by increasing its thermal conductiyity k,or by
decreasing its thermal capacity {p,c,). The ability of the thin film to store energy

decreases as its thermal capacity (plcz) decreases. Also, thermal resistance of the thin

layer decr‘eases as its thermal conductivity &, increases. As a result, the thick domain
interaction with its surrounding is not affected by the presence of the thin layer as
a, increases and this implies that the predictions of both models become very close to
each other. Figure (7.13) clearly portrays that the deviation between the predictions of
both models decreases as time proceeds. This is predicted since both models show that
#—>0 as n—oo. Also, low thermal diffusivity «, implies tﬁat the thick domain has
law thermal conductivity or large thermal capacity ratios. If the thick domain has low
thermal conductivity then its interaction with the thin domain is week and as a result,

the thick domain is not aware of the existence of the thin layer. On the other hand, if the
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thick domain thermal capacity is large, then the thermal effects of the thin layer can rot
cause significant thermal changes in the thick domain.

Figures (7.15 and 7.16) show the effect of K, on the validity of using the
generalized thermal boundary condition. The effect of K, on the validity of the
generalized boundary condition is insignificant. As an example, the temperature
difference does not exceed 0.035 for any X, used. But relatively as X, increases, then
both models will obtain a better agreement. As the thin film thermal conductivity &,
increases, then the thick domain can feel the external thermal effects of the surrounding
perfectly as if the thin layer is in non-existence. Also, if the thick domain thermal
conductivity decreases, then the existence of the thin layer does not affect the thermal
interaction of the thick domain with the external boundary. As a result, the thick domain
behaves as if the thin layer, again, is in non-existence.

Figures (7.17 and 7.18) show the effect of the thickness ratio (R) on the
dimensionless tem?erature difference. The validity of using the generalized boundary
condition is secured as R decreases. This was expected since decreasing R decreases the
total thermal capacity of the thin layer and this in turns decreases the thin layer ability to
store energy. Also, as R decreases the thin layer thermal resistance decreases and this in
turns justifies the replacement of the thin layer by its equivalence generalized thermal
boundary condition. In the limit as the layer thickness (R-1) approaches 0.0, the
interaction of the thick domain with its surrounding is not affected by the presence of
the thin layer. As mentioned previously, the approximate model ignores the presence of
the thin layer and replaces its effect by using the generalized thermal boundary
condition. This replacement becomes more accurate when the thin layer gets
insignificant effect. This is satisfied when the thin layer has very small thickness,

density, specific heat and high thermal conductivity.
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Figures (7.19 and 7.20) show the exact and the approximate transient temperature
5variation in the thick domain for certain values of thickness ratio, thermal diffusivity
ratio, thermal conductivity ratio and different dimensionless distance in the thick
domain. Evident from these figures that both models give almost the same predictions at
any location in the thick domain according to the values summarized in Table (7.1).
Figure (7.21) shows the exact and the approximate temperature distribution in the thick
domain for certain values of thickness ratio, thermal diffusivity ratio, thermal
conductivity ratio and different dimensionless time. This figure depicts that both models
give almost the same predictions at any time in the thick domain according to the values
summarized in Table (7.1).

Figure (7.22) shows a map for the validity of using the generalized boundary
condition. The valid region, within which using the generalized _Bdundary condition is

secured, increases as «, increases and R decreases. It is found that this map is

insensitive to the changes in K,. But relatively for very high values of K, the
{ _
temperature difference between the exact and approximate models become very small
as shown tn Fig. (7.15).
Table (7.1) summarizes the ranges of @, within which the generalized thermal
boundary condition yields accurate predictions. What is shown here is that the ranges of
a, become narrower as R increases. As an example, when R=1.01, the generalized

thermal boundary condition may be used over the entire ranges of «, . On the other

hand when R=1.5, the generalized boundary condition is secured when «, is greater

than 0.9,
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7.2 Generalized boundary condition for the hyperbolic heat conduction

model

Figures (7.23 and 7.24) show the exact temperature distributions in both
domains under the effect of the parabolic and hyperbolic heat conduction models. From
these figures, it is shown that both models giﬂ'e almost the same predictions since the

values of 7, and r,, arerelatively small. This implies that the phase-lag concept has
insignificant effect on the predictions of the parabolic heat conduction model when 7,

and 7, are less than 0.01. Consequently as 7., or 7, increases, the deviation between

both models increases. Figures (7.25-7.27) show a compariso.n between the exact and
the approximate model. The approximate model uses the generalized hyperbolic
boundary condition. Both figures show that the generalized boundary condition gives a
very good prediction for the layers thermal behavior.

Figure (7.28) shows the effect of the thermal diffusivity ratio (a,) on the
predictions of the generalized boundary condition as compared to the predictions of the
exact model. Therefore, from this figure, the validity of using the generalized boundary
is secured as @, increases. Using thin film of large &, implies that the thin film has high
a,or the thick domain has low a,. The thin film thermal diffusivity a,may be
increased by increasing its thermal conductivity &, or by decreasing its thermal capacity
{p,c,). The ability of the thin film to store encrgy decreases as its thermal capacity
(p,c,) decreases. Also, thermal resistance of the thin layer decreases as its thermal
conductivity k, increases. As a result, the thick domain interaction with its surrounding
is not affected by the presence of the thin layer as a, increases and this implies that the

predictions of both models become very close to each other. Also, low thermal
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diffusivity e, implies that the thick domain has law thermal conductivity or large
thermal capacity. If the thick domain has low thermal conductivity then its interaction
with the thin domain is weak and ‘as a result, the thick domain is not aware of the
existence of the thin layer. On the other hand, if the thick domain thermal capacity is
large, then the thermal effects of the thin layer can not cause significant thermal changes
in the thick domain. |

Figure {7.29) shows the effect of K, on the validity of using the generalized
thermal boundary condition. As a result the effect of K, on the deviation between the
predictions of both models is less significant than the effect of a, . But relatively as
K increases, then both models become in a better agreement. As the thin film thermal
conductivity k, increases, then the thick domain can feel the external thermal effects of
the surrounding perfectly as if the thin layer is in non-existence. Also, if the thick
domain thermal conductivity decreases, then the existence of the thin layer does not
affect the thermal interaction of the thick domain with the external boundary. As a
result, the thick domain behaves as if the thin layer does not exist.

Figure (7.30) shows the effect of the thin layer thickness (R) on the accuracy of
using the generalized thermal boundary condition. In which case the validity of using
the generalized boundary condition is secured as R decreases. This is obvious since
decreasing R decreases the total thermal capacity of the thin layer and this in turns
decreases the thin layer ability to store energy. Also, as R decreases the thin layer
thermal resistance decreases and this in turns justifies the replacing of the thin layer by
its equivalence generalized thermal boundary condition. In the limit as (R-1) approaches
0.0, the interaction of thé thick domain with its surrounding is not affected by the
presence of the thin layer. As mentioned previously, the approximate model ignores the

presence of the thin layer and replaces its effect by using the generalized thermal
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boundary condition. This replacement becomes more accurate when the thin layer is of
insignificant effect. This is satisfied when the thin layer has very small thickness,
density and high thermal diffusivity.

Figure (7.31) shows the transient temperature variation as predicted by the

parabolic diffusion and hyperbolic wave models at different valuesof 7, and 7_,.
Hence, the deviation from the parabolic model increases as ¢, and r_, increases.

Table (7.1) summarizes the ranges of «, within which the generalized hyperbolic
thermal boundary condition yields accurate predictions. It is clear that the ranges of @,
become narrower as R increases. As an example, when R=1.01, the generalized thermal
boundary condition may be used over the entire ranges of a, . On the other hand when
R=1.5, the generalized boundary condition is secured when «, is greater than 0.9.

7.3 Parabolic and hyperbolic heat conduction models for imperfect

contact

Although neglected until now, it is important to recognize that, in composite
systems, the temperature drops across the “interface between materials may be
appreciable. In the present work, the effect of imperfect contact and the temperature
drop at the interface in the composite systems is studied for the hyperbolic model. Also,
comparison between perfect and imperfect contact, and when the imperfect becomes
perfect is obtained here.

Figures (7.32-7.35) show the effect of the interfacial Biof number on the spatial
temperature distribution within the two domains. Figures (7.32 and 7.33) clearly
demonstrate that the temperature distribution for the imperfect contact case approaches
that for the perfect contact case as Bi increases. Also, the interfacial temperature jump

decreases as Bi number increases. Using the perfect thermal contact assumption,
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overestimates the temperature in the first domain, which is adjacent to the heat transfer
boundary, i. e, the boundary at which the heating (or the cooling) effects are applied. On
the other hand, the perfect thermal contact assumption underestimates the temperature
witﬁin the second domain adjacent to the insulated boundary. Figures (7.34 and 7.35)
show that interfacial Biof number larger than 50 yields predictions similar to that
produced by the perfect contact models. Figure (7.36) shows the deviation between the
predictions of both perfect and imperfect contact models at different interfacial Biot
numbers. Therefore, the deviation decreases as Bi increases. The deviation in the
domain adjaéent to the heat transfer boundary is larger than that in the domain adjacent
to the insulated boundary. Also, the deviation has its maximum value at the contact
plane. As a result, it is concluded that the deviation between both the perfect and the
imperfect contact models is significant near the contact plane and in locations having
high heat transfer rates. Figure {7.23) shows the spatial temperature distribution using

the perfect contact model at different thermal relaxation times 7, and 7. It is evident

from this figure that for r, and 7, less than 0.01; the thermal relaxation time has

insignificant effect on the prediction of the diffusion parabolic model, which assumes

that 7, =7_,=0.0.

Figure (7.37) shows the effect of the interfacial Bior number on the transient
temperature variation within the two domains at two different locations. It is confirmed
from this figure that the transient temperature variation for the imperfect contact case
approaches that for the perfect contact case as Bi increases. Also, this figure shows that
interfacial Biot number larger than 50 yields predictions similar to that produced by the

-perfect contact model.
Figure (7.38) shows the effect of the second domain thickness (R-1) onthe

predictions of the perfect and imperfect contact models within the first domain. The
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deviation between both models decreases as the second domain thickness decreases. As
the thickness of the second domain decreases, its thermal capacity and thermal
resistance decreases and as a result, the first domain is not affected by the presence of
the second domain or by the type of the interfacial thermal conditions at the interface
between both domains. For situations involving very thin second domain, perfect
thermal contact assumption is justified. As an example, it is clear from Fig. (7.38) that
the second domain has insignificant effect on the thermal behavior of the first domain
when the dimensionless thickness of the second domain is less than 0.1.

Figure (7.39) shows the effect of the thermal conductivity ratic K, onthe
predictions of both models within the two domains. As K, increases, the deviation
between the predictions of both models decreases in the second domain, which has the
higher conductivity, and increases in the first domain, which has the lower conductivity.
Domains that have high thermal conductivity are less sensitive to the type of the
~ interfacial thermal conditions. Also, the temperature distribution in the second domain,
which has higher cc;nductivity, may be assumed to be spatially lumped.

Figure (7.40) shows the effect of the thermal diffusivity ratio @, on the
deviation between the predictions of both models within the two domains. It is
illustrated that as «, increases the deviation increases in the second domain and
decreases in the first domain. Increasing o, with a fixed value of X, implies that the

thermal capacity ratio p,c,/p,c, increases. The thermal capacity ratio p, ¢,/ p, ¢,

increases by increasing p, c,or decreasing p,c,. As the thermal capacity of the first
domain increases, then the type of interfacial thermal boundary condition does not cause
a significant change in the temperature distribution of the first domain. On the other

hand, as p,c, decreases, then the type of the interfacial thermal boundary condition
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causes a significant change in the temperature distribution of the second domain.
Temperature distribution within low thermal capacity domains is very sensitive to any

change in the interfacial thermal boundary conditions.

7.4 Dual phase model for perfect and imperfect contact
Figures (7.41 and 7.42) obtain the lagging behavior of the dual phase model. If 7, <7,

then temperature gradient is the cause and the heat flux vector is the effect as shown in

Fig. (7.41). On the other hand, if 7, >7_as shown in Fig. (7.42) then the heat flux

vector is the cause and the temperature gradient is the effect. Figures (7.43 and 7.44)
show the exact temperature distributions in both domains under the effect of the
hyperbolic and the dual phase heat conduction models. From these figures it is obvious,

that both models give almost the same predictions since the values of 7, and 7, , are

relatively small. This implies that the phase-lag concept has insignificant effect on the

predictions of the dual phase heat conduction model when 7, and 7., are less than
0.001. This indicates that as 7, or 7y ,increases, the deviation between both models

increases.

Figures (7.45 and 7.46) show the effect of the interfacial Biof number on the
spatial temperature distribution within the two domains. From these figures, it is shown
that the temperature distribution for the imperfect contact case approaches that for the

perfect contact case as Bi increases. Also, the interfacial temperature jump decreases as
Bi number increases. Figures (7.47-7.48) show that interfacial Biof number larger than

100 yields predictions similar to that of the perfect contact models.
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7.5 Perturbation technique

The present work was done for the case of convection heat transfer model as in
the case study in chapter 6 and some dimensionless parameters at which the exact and
the perturbed solution become identical are obtained here.

Figures (7.49-7.53) show comparisons between the predictions of the exact and
perturbation models under the effect of different dimensionless parameters H,,H,and H,,
which are described previously. It is shown that the validity of using the perturbation technique

is secured for large values of H, and small values of H,and H . It is obvious that the validity
of the perturbation technique is secured for large values of H , since the perturbation parameter
¢cis defined as £=1/H,. As H,increases, &decreases and the using of the perturbation

technique is justified. Physically, I, is proportional to the convection heat transfer coefficient

between the fluid and the solid wall. As the convectton heat transfer coefficient increases, then
the solid temperature approaches the fluid temperature and the normalized difference between

them may be considered as a small-perturbed quantity. Also, it is obvious that using the

perturbation technique is justified for small values of H,and H, . Small values of ,imply
that the role of the enthalpy flow Vp, ¢, is more significant than the role of the convected heat

between the fluid and the solid domains. Increasing the enthalpy flow into the channel implies
that more energy is carried to each axial location and as a result, solid wall has enough energy to
evaluate its temperature in order to become very near the fluid temperature. Also, from the
definition of H,, H represents the ratio between the convective losses from the solid wall to
the ambient and the energy stored within the solid domain. If the convective losses from the
solid wall to the ambient decreases, then the temperature of the solid wall remains very near the
flowing fluid temperature. As these losses ipcrease, the fluid has to provide the solid wall with

enough energy to maintain approximately the same small difference between their temperatures.
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Fig. 7.1 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.2 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.3 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.5: Effect of ar and Kr on the transient temperature difference at different R.
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Fig. 7.6: Effect of ar and Kr on the transient temperature difference at different R.
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Fig. 7.9 : Exact and approximate transient temperature variation within the thick

domain at differentar.,
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Fig. 7.1 : Exact and approximate transient temperature variation within the thick
domain at different R.

91

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



1.00 1 | ] I |
N, 4 L
a N £=0.9 W
\ =Kr=5.0
0.80 —] N Exact
@ NN e Approximate "
E’: k j
E |
(LE —
O
Q.
E O X .
L 0.60 — R -
‘o -] \‘\ ‘-‘-.
[%2]
2
[
i) -
U) -1
<
O
E -
Q
0.40 —
a : 2 L
0.20 I | 1 I [ l I l T
0.00 0.20 0.40 0.60 0.80 1.00

Dimensionless time, 1]

Fig. 7.12 : Exact and approximate transient temperature variation within the thick
domain at different R.

92

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



A

Dimensionless femperature difference,

0.08

o
o
)

0.04

0.02

0.00

~. -
TN B
\\‘
N AN
\\‘. ~
o
I .
—_—— .\‘ I
- T
—//‘ -_-_'—‘—-_“::T\""‘-.___ ‘\_-"‘*
T l T I—--“-I ET __I__-_-T;—.——-‘—-——
0.20 0.40 0.60 0.80 1.00

Dimensionless time, T|
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Fig. 7.15 : Effect of thermal conductivity ratio on the transient temperature difference
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Fig. 7.18 : Effect of thickness ratio on the transient temperature difference.
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Fig. 7.20 : Exact and approximate transient temperature variation in the thick domain
at different & .
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Fig. 7.21 : Exact and approximate temperature distribution in the thick domain at
different M.
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Fig. 7.22 : The validity region of the generalized thermal boundary condition.
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Fig. 7.23 : Spatial temperature distribution within the two domains using the parabolic
and the hyperbolic heat conduction models.
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Fig. 7.24 : Spatial temperature distribution within the two domains using the parabolic
and the hyperbolic heat conduction models.
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Fig. 7.25 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.26 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.27 : Exact and approximate transient temperature variation in the thick domain.
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Fig. 7.29 : Exact and approximate temperature variation within the thick domain at
different Kr .
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Fig. 7.30 : Exact and approximate temperature variation within the thick domain at
different R .
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Fig. 7.31: Transient temperature variation within the two domains using the parabolic
and the hyperbolic heat conduction models.
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Fig. 7.32 : Spatial temperature distribution within the two domains for perfect and
imperfect contact using the hyperbolic heat conduction model.

112

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



0

Dimensionless temperature ,

1.00

0.80

0.60

0.20

0.00

Fig. 7.33 : Spatial temperature distribution within the two domains for perfect and

|

domain (1)

Domain (2)

-
. S
/»(/
/’f

\

=

0.00 0.40
Dimensionless distance , &

1.20

imperfect contact using the parabolic heat conduction model.

113

1.60

2.00

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



0

Dimensionie ss temperature ,

1.00

0.8G

0.60

0.40

0.20

0.00
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Fig. 7.36 : Effect of Biot number on the temperature distribution difference within the
two domains for perfect and imperfect contact using the parabolic heat conduction

model.
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Fig. 7.37 : Transient temperature variation within the two domains for perfect and
imperfect contact using the hyperbolic heat conduction model.
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Fig. 7.38: Spatial temperature distribution within the first domain for perfect and
imperfect contact using the hyperbolic heat conduction model at different R.
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Fig. 7.39 : Spatial temperature distribution within the two domains for perfect and
imperfect contact using the hyperbolic heat conduction model at different Kr.
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Fig. 7.41 : Change of dimensionless heat flux (cause) and dimensiontess temperature
gradient (effect) with dimensionless time.
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Fig. 7.42 : Change of dimensionless heat flux (effect) and dimensionless temperature

gradient (cause) with dimensionless time
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Fig. 7.45 : Spatial temperature distribution for perfect and imperfect contact within the
two domains using the dual phase heat conduction model at different Biot number.
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Fig. 7.47: Transient temperature variation within the two domains for perfect and
imperfect contact using the dual phase heat condution model.
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Fig. 7.48 : Transient temperature variation for perfect and imperfect contact within the
two domains using the dual phase heat conduction model at different Biot number.
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Fig. 7.49 : Exact and approximate transient temperature vatriation in the fluid domain
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Fig. 7.50 : Exact and approximate transient temperature variation in the fluid domain.
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Fig. 7.51 : Exact and approximate transient temperature variation in the fluid domain.
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Fig. 7.52 : Excat and approximate temperature distribution in the fluid domain at
different 1.
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Fig. 7.53 : Exact and approximate temperature distribution in the fluid domain.

133

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



8-CONCLUSIONS

A generalized thermal boundary condition, which takes into account all thermal
effects of a thin layer in thermal contact with an adjacent domain, is derived for
parabolic and hyperbolic models. These effects are the thermal capacity, enthalpy flow,
thermal diffusion, viscous dissipation and other aspects of thermal interaction between
the thin layer and both its surroundings and adjacent domain. An example is given to
demonstrate the importance of the introduced generalized thermal boundary condition.
It is found that the validity of the generalized therma! boundary condition is secured in
layers having large thermal conductivity and diffusivity ratios and in layers having
small thicknesses. However, the effect of the thermal conductivity ratio on the validity
of the generalized boundary is less significant as compared to the effect of the thin layer
thickness or thermal diffusivity. As an example, the generalized boundary condition is

secured in layers héving thickness less than 0.01 whatever the values of «, and K, are.
The ranges of a,within which the generalized boundary condition is valid become

narrower as the film thickness increases.

For 7, and r, lessthan 0.01; the thermal relaxation time has insignificant effect

=0.0.

on the predictions of the diffusion parabolic model, which assumes that 7, =1,
Also, the phase-lag concept has insignificant effect on the predictions of the dual phase
heat conduction model when 7, and 7, areless than 0.001. As 7, or 7;, increases,
the deviation between both models increases.

The transient temperature variation for the imperfect contact case approaches that

for the perfect contact case as Biof number (Bi)increases. Also, the interfacial Biof
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number larger .than 50 yields predictions similar to that of the perfect contact model.
%Also, for situations involving very thin second domain, perfect thermal contact
assumption is justified. On other hand, it is concluded that the deviation between both
the perfect and the imperfect contact models is significant close to the contact plane and
in locations having high heat transfer rates.

The coupling between the two energy equations, which describes the thermal
behavior of the transient conjugated heat transfer problem in circular ducts, is
eliminated using a simple perturbation technique. Elimination of this coupling is
possible in applications involving high convective heat transfer coefficient between the
flowing fluid and the solid wall. As a result of this elimination, solving the produced
decoupled governing equations becomes an easy matter. A case study is presented to
investigate the validity of the proposed perturbation technique. The predictions of both
the exact and the approximate models are found to be in a very good agreement

especially at large values of the dimensionless group

2 h,. r|2 | 2 h;‘
H,= T and at small values of both H = and
Vpsc:(rl —rl ) focf
H, 2h rn

“vpelnt-nt)
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APPENDEX A

FORTRAN 77 CODE FOR THE NUMERICAL INVERSION OF THE LAPLACE

TRANSFORM
The FORTRAN 77 code that performs the Laplace inversion in terms of the Riemann-
sum approximation, Eq. (2.22), is enclosed here. The sample program performs

inversion of the transformed temperature, resulting from the solution of Egs. (2.16) and

(2.17) subject to the case study,
w.(£,P)=Cie™" +Cye™F +% | (A1)

where z is the space variable (equivalent to & used throughout the thesis), P is the
Laplace transform variable to be inverted to the real time 77 (equivalent to S used in the
program). The temperature distribution is calculated at a fixed instant of time,
$=0.05,0.1...... ,0.5 for parabolic (the real time), in the physical domain from Z=0.0 to
1.0. The “Do-loop;’ is thus placed on (z) at- a constant value of S. Should a time
distribution of temperature be intended, the Do-loop should be placed on (S) instead. In
all cases, the program will automatically adjust the optimal value of ¥ according to Eq.
(1.18). Line numbers are generated at the beginning of every statement for later

illustrations.

This program only shows a working example, with emphasis on illustrating the essence

of the Laplace inversion technique via the Riemann-sum approximation.

1 PROGRAM LAG

2 IMPLICIT DOUBLE PRECISION (A-H,0-Z)
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+**double precision is used due to possible intensive iterations (especially
g ***recommended for the use of personal computers(PC})

3 EXTERNAL FUNC

#**x*FUNC defines the Laplace transformed solution

4 COMMON/DA/ z, Kr, Ar, R

5 OPEN (5,F[LE='A:\H.DAT',STATUS='UNKNOWN')

6  S=05 |

**%S is the real time. Its value can be the physical time with a dimension (t)

or*** the dimensionless time without a dimension (7).

***This sample program computes the temperature distribution in space (z)

from 0 (z0) to 1.0 (zf) at §=0.5

7 NTERMS=4000O.

**+Maximum number of terms used in the Riemann-sum approximation,

***Egs. (2.16) and (2.17). Default value is set to 20000.

8 GMMA=0.0

#++ GMMA is the value for the product of 77 in Egs. (2.16) and (2.17). A value of 0.0

intrigues the default value of ynp=4.7

9 Kr=1.3
10 Ar=0.92
11 R=1.1
12 z0=0.
13 zf=1.0

**+*Define the initial (z0) and the final (zf) positions for the temperature distribution
14 DO 10 I=1,101

15 Z=Z0+Z£-Z0)y*(I-1)/100.
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*x* 7 is the .;pace variable. This sample program discretizes the physical domain
***from 0 to 1.0 into 100 intervals
16 CALL LAPINV (FUNC,GMMA,S,RESULT,NTERMS)
*** APINV is the subrouting for the Riemann-sum approximation of the Laplace
***inversion. RESULT= temperature at (z,5)
17 WRITE (5,%)Z,RESULT
18 10 CONTINUE
19 CLOSE (5)
20 END
*** The function subroutine FUNC (P) defines the solutions of temperature in the
***[ aplace transform domain. This block needs to be modified for different problems
***with different solutions.
2] FUNCTION FUNC (5)
22 IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
23 COMMON /DA/Z, Kr, Ar, R
24 COMPLEX P, FACZ
*** The Laplace transform variable P must be complex. Any other functions of P
*x*ced in defining the transformed solution of temperature (C1 and C2 in this program
***for example) must be declared to be complex accordingly.
25 C2=-1/P/(1+(EXP (-2*SQRT PH*((1+AK)+(1-AK)*EXP ((2*R-2)*
$ SQRT (P/AL)))/((I;AK)+(1+AK)*EXP ((2*R-2)*SQRT (P/AL)))))
Cl1=-1/P/(1+H(EXP (-2*SQRT @) ((1+AK)+H(1-AK)*EXP ((2*R-2)*
$SQRT (P/AL))Y
$((1-AK)+(1+AK)*EXP((2*R-2)* SQRT(P/ALY)) *EXP(-2*SQRT(P))*

$((1-+AK)+(1-AK)*EXP((2*R-2)* SQRT(P/AL)))/(1-AK)+(1+AK)*
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26

27

28

$EXP ((2*R-2)*SQRT(P/AL)))
FUNC=CI*EXP (SQRT(P)*Z)+C2*EXP(-SQRT(P)*Z)H/P
RETURN

END

s*+Subroutine LAPINV performs the Riemann-sum to approximate the Laplace

***inversion of the function specified in FUNC (P)

29

30

31

32

33

34

SUBROUTINE LAPINV (FUNC, GMMA, S, RESULT, NTERMS)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

EXTERNAL FUNC

COMMON Z, TRASH1, TRASH2, TRASH3

COMPLEX GAM, B, CPR, PARTB, CHKCON

EPS=1.0D-10

+++EPS defines the convergence threshold for the ratio test of partial sums,

**xEPS=(Temperature (N+1)-Temperature (n))/T emperature(N)),

+**with N denoting the partial sum of the first N terms in Eq. (2.16) and (2.17)

35

GAM=(0.0,0.0)

***Avoid the use of initial condition at $=0.0 in this program.

***[f needed, select a very small value of S, such as 0.001, to evaluate the initial

***temperature for validating purposes.

36

37

38

39

IF (S.EQ.0.0) THEN
WRITE (*,*LAPLACE VARIABLE CANNOT BE ZERO!'
RETURN

ENDIF

**x*The default value of GMM*S§=4.7

40

IF (GMMA EQ.0.0) GMMA=4.7/S
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41 GAM=GMMA
**+Default number of terms used in the Riemann-sum is 20000 terms
42 IF (NTERMS EQ.0.0) NTERMS=20000
43 PI=ACOS (-1.)
44  B=(0.0,1.0)

45 FIRST=(1./S)*EXP(GAM*S)

46 PARTA=0.5*FUNC (GAM)

47 PARTB=(0., 0.)

48 I=0.

*#*Check convergence for the first NTERMS in the Riemann-sum
***Raise warning flags if EPS is larger than the specified value
49 5 IF (LEQ.NTERMS) THEN

50 WRITE (*,*)NO CONVERGENCE FOR 5=.,8

51 GO TO 15

52 ENDIF

53 I=1+1

54 CPR=GAM+B*(I*PL/S)

55 CHKODD=MOD(1,2)

56 CHKCON=PARTB

57 IF (CHKODD.EQ.0) THEN

58 PARTB=PARTB+FUNC(CPR)

59 ELSE

60 PARTB=PARTB+FUNC(CPR)*(-1)**1

61 ENDIF

62  RESULT2=FIRST*(PARTA+REAL(PARTB})
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63 RESULT1=FIRST*(PARTA+REAL(CHKCON))

*++If summation is zero, apply different convergence check

- 64 IF (RESULT1.EQ.0.0)THEN

65 IF(ABS(RESULT2) LT.EPS)GO TO 15

66 GOTOS | |

67 ENDIF

***The convergence check is then abs (abs(f{n)-f{n-1))/f(n)).
***Eirst avoid divide by zero error |

68 IF (RESULT2.EQ.0.0) THEN

69 IF(ABS(RESULT1).LT EPS)GO TO 15

70 GOTOS

71 ENDIF

72 CCON=ABS(ABS((RESULT2-RESULT1))/RESULT2)
73 IF(CCON.LE.EPS)GO TO 15

74  GOTOS '
*+*+If the Laplace variable is bhanged in successive calculations, such as the multible-
***time calculations, make sure to reset gamma to zero for the next case

75 15 GMMA=0.0

76 RESULT=RESULTI

77 RETURN

78 END
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